Câu hỏi:

26/11/2025 40 Lưu

Tìm cân nặng trung bình của học sinh lớp 11 được cho trong bảng sau:

Cân nặng (kg)

[40,5; 45,5)

[45,5; 50,5)

[50,5; 55,5)

[55,5; 60,5)

[60,5; 65,5)

[65,5; 70,5)

Số học sinh

10

7

16

4

2

3

A. 51,81kg                 
B. 59,81kg               
C. 60,81kg                      
D. 41,81kg

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

\[\overline x  = \frac{{10.43 + 7.48 + 16.53 + 4.58 + 2.63 + 3.68}}{{10 + 7 + 16 + 4 + 2 + 3}} = 51,81kg\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

A. \(\tan \alpha > 0;{\rm{ }}\cot \alpha > 0.\)                                                  
B. \(\tan \alpha < 0;{\rm{ }}\cot \alpha < 0.\)
C. \(\tan \alpha > 0;{\rm{ }}\cot \alpha < 0.\)        
D. \(\tan \alpha < 0;{\rm{ }}\cot \alpha > 0.\)

Lời giải

Chọn A

Nếu \(2\pi  < \alpha  < \frac{{5\pi }}{2}.\) thì \(\tan \alpha  > 0;{\rm{ }}\cot \alpha  > 0.\)

Câu 3

A. \({u_n} = 1 - n\).  
B. \({u_n} = 3 + 2n\).                           
C. \({u_n} = 2 - n\). 
D. \({u_n} = 9 - {n^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\sin \alpha > 0.\]                               
B. \[\cos \alpha > 0.\]             
C. \[\tan \alpha > 0.\]                             
D. \[\cot \alpha > 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left[ {\begin{array}{*{20}{l}}{x = \frac{{2\pi }}{3} + k2\pi }\\{x = - \frac{{2\pi }}{3} + k2\pi }\end{array}\,\,\,\left( {k \in \mathbb{Z}} \right)} \right..\)                    
B. \(\left[ {\begin{array}{*{20}{l}}{x = \frac{{2\pi }}{3} + k\pi }\\{x = \frac{\pi }{3} + k\pi }\end{array}\,\,\,\left( {k \in \mathbb{Z}} \right)} \right.\).
C. \(\left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{3} + k\pi }\\{x = - \frac{\pi }{3} + k\pi }\end{array}\,\,\,\,\left( {k \in \mathbb{Z}} \right)} \right..\)                    
D. \(\left[ {\begin{array}{*{20}{l}}{x = \frac{{2\pi }}{3} + k2\pi }\\{x = \frac{\pi }{3} + k2\pi }\end{array}\,\,\,\left( {k \in \mathbb{Z}} \right)} \right..\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP