Cho cấp số cộng có \[{u_2} = 3;\,\,{u_5} = 21\]. Tính tổng 19 số hạng đầu của cấp số cộng?
Quảng cáo
Trả lời:
Chọn C
Ta có công thức \(\left\{ \begin{array}{l}{u_2} = 3 = {u_1} + d\\{u_5} = 21 = {u_1} + 4d\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{u_1} = - 3\\d = 6\end{array} \right.\). Suy ra \[{S_{19}} = \frac{{19}}{2}\left[ {2.( - 3) + (19 - 1)6} \right] = 969.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Ta có công thức tính số hạng tổng quát cấp số nhân \[{u_n} = {u_1}.{q^{n - 1}}\,,n \ge 2.\]
Câu 2
Lời giải
Chọn B
Ta có \(n = 64\).
Do \({x_{32}};{x_{33}} \in {\rm{[}}12,5;15,5) \Rightarrow p = 3;{a_3} = 15,5;{m_3} = 18;{m_1} + {m_2} = 18;{a_4} - {a_3} = 3\) nên
\({M_e} = 15,5 + \frac{{\frac{{64}}{2} - 18}}{{18}} \times 3 = 17,8(3)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


