Giá trị nhỏ nhất của hàm số \(f(x) = 3{\cot ^2}2x - \frac{{\sqrt 3 \left( {1 - {{\tan }^2}x} \right)}}{{\tan x}}\) thuộc khoảng nào sau đây?
Quảng cáo
Trả lời:
Chọn A
\(f\left( x \right) = 3{\cot ^2}2x - \frac{{\sqrt 3 \left( {1 - {{\tan }^2}x} \right)}}{{\tan x}} = 3{\cot ^2}2x - \frac{{\sqrt 3 \left( {1 - \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}}} \right)}}{{\frac{{\sin x}}{{\cos x}}}}\), \(\sin x \ne 0;\cos x \ne 0\).
\( \Leftrightarrow f\left( x \right) = 3{\cot ^2}2x - \frac{{\sqrt 3 \left( {1 - \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}}} \right)}}{{\frac{{\sin x}}{{\cos x}}}} = 3{\cot ^2}2x - \frac{{2\sqrt 3 \cos 2x}}{{2\sin x.\cos x}} = 3{\cot ^2}x - 2\sqrt 3 \cot 2x\).
Đặt \(\cot 2x = t\), \(t \in \mathbb{R}\), hàm số trở thành \( \Leftrightarrow f\left( t \right) = 3{t^2} - 2\sqrt 3 t\).
Bảng biến thiên:

Từ bảng biến thiên suy ra giá trị nhỏ nhất của hàm số \(f(x)\) là \( - 1\). Do đó chọn A.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
![Câu 15: Cho hình chóp \(S.ABCD\) có đáy \[ABCD\] là hình bình hành. Gọi \(O\)là giao điểm của \(AC\) và \(BD\). Giao tuyến của \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là A. \(SD.\) B. \(SO.\) C. \(SB.\) D. \(SA.\) (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/33-1764262468.png)
Hiển nhiên \(S \in \left( {SAC} \right) \cap \left( {SBD} \right)\).
Ta có \(O = AC \cap BD \Rightarrow \left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right)\\O \in BD \subset \left( {SBC} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\).
Do đó \(\left( {SAC} \right) \cap \left( {SBD} \right) = SO\).
Câu 2
Lời giải
Chọn C
![Chọn C \[SA\] và \[BC\]không đồng phẳng n (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/38-1764263251.png)
Gọi \(N\) là trung điểm của \(BC\). Vì \[G\] là trọng tâm tam giác \(ABC\) nên \(\frac{{AG}}{{AN}} = \frac{2}{3}\).
Vì điểm \(M\) nằm trên cạnh \(AD\) sao cho \(AM = 2MD\) nên \(\frac{{AM}}{{AD}} = \frac{2}{3}\).
Do đó \(\frac{{AG}}{{AN}} = \frac{{AM}}{{AD}} = \frac{2}{3}\). Suy ra \(GM{\rm{ // }}DN\).
Ta có \(\left\{ \begin{array}{l}GM{\rm{ // }}DN{\rm{ }}\\GM \not\subset \left( {BCD} \right)\\DN \subset \left( {BCD} \right)\end{array} \right. \Rightarrow GM{\rm{// }}\left( {BCD} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
