Câu hỏi:

01/12/2025 6 Lưu

Tính tổng \(S\) gồm tất cả các giá trị \[m\] để hàm số \[f\left( x \right) = \left\{ \begin{array}{l}{x^2} + x\,\,\,\,\,{\rm{khi }}x < 1\\2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{ khi }}x = 1\\{m^2}x + 1\,\,\,{\rm{khi }}x > 1\end{array} \right.\] liên tục tại \(x = 1\).

A. \(S = - 1\).       
B. \(S = 1\).  
C. \(S = 0\).       
D. \(S = 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + x} \right) = {1^2} + 1 = 2\); \(f\left( 1 \right) = 2\); \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{m^2}x + 1} \right) = {m^2} + 1\)

Để hàm số liên tục tại \(x = 1\) thì \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right) = 2\)

Suy ra \({m^2} + 1 = 2 \Leftrightarrow {m^2} = 1 \Leftrightarrow m = \pm 1\)

Vậy \(S = 1 + \left( { - 1} \right) = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

A. \[\left( {BC'D} \right)\].    
B.  \[\left( {BCA'} \right)\]. 
C. \[\left( {BDA'} \right)\].         
D. \[\left( {A'C'C} \right)\].

Lời giải

Chọn A

Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng AB'D' song song với mặt phẳng nào trong các mặt phẳng sau đây (ảnh 1)

Do \[ABCD.A'B'C'D'\] là hình hộp nên \(BB'{\rm{ // }}DD';\;AB{\rm{ // }}C'D'\)\(BB' = DD';\;AB = C'D'\)

Suy ra \(BB'D'D,\;ABC'D'\) là các hình bình hành

Suy ra \(AD'{\rm{ // }}BC';\;B'D'{\rm{ // }}BD\) hay \(AD'{\rm{ // }}\left( {BC'D} \right);\;B'D'{\rm{ // }}\left( {BC'D} \right)\)

Vậy \[\left( {AB'D'} \right){\rm{ // }}\left( {BC'D} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(MN{\rm{ // }}mp\left( {SAB} \right)\).             
B. \[MN{\rm{ // }}mp\left( {SCD} \right)\].            
C. \(MN{\rm{ // }}mp\left( {ABCD} \right)\).       
D. \(MN{\rm{ // }}mp\left( {SBC} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {SAC} \right)\).  
B. \(\left( {SAB} \right)\).       
C. \(\left( {SAD} \right)\).    
D. \(\left( {SBC} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[1\].           
B. \( - \frac{1}{3}\).     
C. \[ + \infty \].  
D. \[ - \infty \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP