Câu hỏi:

01/12/2025 109 Lưu

Cho hình hộp ABCD.A’B’C’D’ có tất cả các mặt đều là hình vuông cạnh a. Điểm M, N lần lượt nằm trên cạnh AD’, BD sao cho AM = DN = x (\[0 < x < a\sqrt 2 \]). Chứng minh rằng đường thẳng MN luôn song song với một mặt phẳng cố định.

 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình hộp ABCD.A’B’C’D’ có tất cả các mặt đều là hình vuông cạnh a. (ảnh 1)

 

Gọi (P) là mặt phẳng qua AD và song song với mp(A’D’CB)

Gọi (Q) là mặt phẳng qua M và song song với mp(A’D’CB). Giả sử (Q) cắt DB tại N’.

Theo định lí Ta-lét ta có: \[\frac{{AM}}{{AD'}} = \frac{{DN'}}{{DB}}\,\,\,\,\,\,\,\,\,\,\left( * \right)\]

Vì các mặt của hình hộp là hình vuông cạnh a nên: \[AD' = DB = a\sqrt 2 \]

Từ (*), ta có AM = DN’ DN’ = DN  N’ ≡ N  MN (Q)

Mà (Q) // (A’D’CB) suy ra MN luôn song song với mặt phẳng cố định (A’D’CB)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Ta có

\[\mathop {\lim }\limits_{x \to - \sqrt 3 } \frac{{2{x^3} + 6\sqrt 3 }}{{3 - {x^2}}} = \mathop {\lim }\limits_{x \to - \sqrt 3 } \frac{{2(x + \sqrt 3 )({x^2} - x\sqrt 3 + {{\sqrt 3 }^2})}}{{(\sqrt 3 - x).(\sqrt 3 + x)}} = \mathop {\lim }\limits_{x \to - \sqrt 3 } 2\frac{{{x^2} - x\sqrt 3 + {{\sqrt 3 }^2}}}{{\sqrt 3 - x}} = 3\sqrt 3 = a\sqrt 3 + b.\]

\( \Rightarrow {a^2} + {b^2} = {3^2} = 9\)

Câu 2

A. \[S = \sqrt 2 + 1.\]                 
B. \(S = 2\sqrt 2 .\)     
C. \(S = \frac{1}{2}.\)  
D. \(S = 2.\)

Lời giải

Chọn B

Ta có \[1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{{{2^n}}} + \cdots \] là tổng của cấp số nhân lùi vô hạn với \({u_1} = 1\); \(q = \frac{1}{2}\) nên

\[S = \sqrt 2 \left( {1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots + \frac{1}{{{2^n}}} + \cdots } \right) = \sqrt 2 \frac{{{u_1}({q^n} - 1)}}{{q - 1}} = \sqrt 2 \frac{{1({{\left( {\frac{1}{2}} \right)}^n} - 1)}}{{\frac{1}{2} - 1}} = 2\sqrt 2 ;(q \ne 1)\]

Câu 3

A. \[a = 6\].            
B. \[a = 9\].    
C. \[a = 4\].    
D. \[a = 8\].       

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hàm số liên tục trên khoảng\[\left( {1;\,\, + \infty } \right)\]
B. Hàm số liên tục trên khoảng\[\left( {1;\,\,4} \right)\]
C. Hàm số liên tục trên \[\mathbb{R}\]
D. Hàm số liên tục trên khoảng\[\left( { - \infty ;\,\,4} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(0.\)                                        
B. \(1.\)                        
C. \( + \infty .\)           
D. \( - \infty .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(f\left( x \right)\) không liên tục tại \(x = 0.\)           
B. \(f\left( x \right)\) liên tục trên \[\left( { - \infty ;\,\,1} \right)\].
C. \(f\left( x \right)\) liên tục trên \(\mathbb{R}.\)                                             
D. \(f\left( x \right)\) liên tục tại \(x = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( - \frac{3}{2}.\)  
B. \(1.\)                        
C. \( - 2.\)                    
D. \(0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP