Trên một công trường xây dựng, do cải tiến kỹ thuật nên năng suất lao động của công nhân tăng \(25\% \). Hỏi nếu số công nhân không thay đổi thì thời gian làm xong việc giảm bao nhiêu phần trăm?
Trên một công trường xây dựng, do cải tiến kỹ thuật nên năng suất lao động của công nhân tăng \(25\% \). Hỏi nếu số công nhân không thay đổi thì thời gian làm xong việc giảm bao nhiêu phần trăm?
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi \(x\) là thời gian hoàn thành công việc với năng suất lao động \(100\% \).
\(y\) là thời gian hoàn thành với năng suất \(125\% \).
Vì công nhân không đổi nên thời gian hoàn thành tỉ lệ nghịch với năng suất lao động nên:
\(x.100 = y.125\) hay \(\frac{y}{x} = \frac{{100}}{{125}} = \frac{4}{5} = 80\% \).
Do đó, nếu số công nhân không thay đổi thì thời gian làm xong việc giảm đi \(100\% - 80\% = 20\% \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
a) Xét \(\Delta ABM\) và \(\Delta DCM\) có \(MA = MD\) (giả thiết) \(MB = MC\) (vì \[M\] là trung điểm) \(\widehat {ABM} = \widehat {CMD}\) (đối đỉnh) Do đó \(\Delta ABM = \Delta DCM\) (c.g.c) b) Từ câu a: \(\Delta ABM = \Delta DCM\). Suy ra \(\widehat {BAM} = \widehat {MDC}\). Nên \(AB\,{\rm{//}}\,CD\) (hai góc ở vị trí so le trong bằng nhau). |
|
c) Xét bất đẳng thức trong tam giác \[ACD\] có \(AD < AC + CD\).
Từ \(\Delta ABM = \Delta DCM\) suy ra \(AB = CD\) (hai cạnh tương ứng)
Do đó \(AD < AC + AB\) nên \(\frac{{AD}}{2} < \frac{{AB + AC}}{2}\).
Vậy \(AM < \frac{{AB + AC}}{2}\).
Lời giải
Hướng dẫn giải
Theo bài ra, ta có: \(\frac{{ab}}{{a + b}} = \frac{{bc}}{{b + c}} = \frac{{ca}}{{c + a}}\);
\(\frac{{a + b}}{{ab}} = \frac{{b + c}}{{bc}} = \frac{{c + a}}{{ca}}\);
\(\frac{1}{a} + \frac{1}{b} = \frac{1}{b} + \frac{1}{c} = \frac{1}{c} + \frac{1}{a}\).
Suy ra \(\frac{1}{a} = \frac{1}{c}\); \(\frac{1}{b} = \frac{1}{a}\) hay \(a = b = c\).
Với \(a\), \(b\), \(c\) là ba số khác 0, thay \(b = a\); \(c = a\) vào biểu thức \(M\), ta được:
\(M = \frac{{ab + bc + ca}}{{{a^2} + {b^2} + {c^2}}} = \frac{{{a^2} + {a^2} + {a^2}}}{{{a^2} + {a^2} + {a^2}}} = \frac{{3{a^2}}}{{3{a^2}}} = 1\).
Vậy \(M = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
