Cho tam giác \(ABC\). Gọi \(E,\,\,F\) theo thứ tự là trung điểm của các cạnh \(AB,\,\,AC.\) Trên tia đối của tia \(FB\) lấy điểm \(P\) sao cho \(PF = BF\). Trên tia đối của tia \(EC\) lấy điểm \(Q\) sao cho \(QE = CE\).
a) Chứng minh: \(\Delta AQE = \Delta BCE\,,\,\,\Delta APF = \Delta CBF\), từ đó suy ra \(AP = AQ\).
b) Chứng minh ba điểm \(P,\,\,A\,,\,\,Q\) thẳng hàng.
c) Chứng minh \(BQ\,\,{\rm{//}}\,AC\) và \(CP\,{\rm{//}}\,AB\).
d) Gọi \(R\) là giao điểm của hai đường thẳng \(PC\) và \(QB\). Chứng minh rằng ba đường thẳng \(AR\,,\,\,BP\,,\,\,CQ\) đồng quy.
Cho tam giác \(ABC\). Gọi \(E,\,\,F\) theo thứ tự là trung điểm của các cạnh \(AB,\,\,AC.\) Trên tia đối của tia \(FB\) lấy điểm \(P\) sao cho \(PF = BF\). Trên tia đối của tia \(EC\) lấy điểm \(Q\) sao cho \(QE = CE\).
a) Chứng minh: \(\Delta AQE = \Delta BCE\,,\,\,\Delta APF = \Delta CBF\), từ đó suy ra \(AP = AQ\).
b) Chứng minh ba điểm \(P,\,\,A\,,\,\,Q\) thẳng hàng.
c) Chứng minh \(BQ\,\,{\rm{//}}\,AC\) và \(CP\,{\rm{//}}\,AB\).
d) Gọi \(R\) là giao điểm của hai đường thẳng \(PC\) và \(QB\). Chứng minh rằng ba đường thẳng \(AR\,,\,\,BP\,,\,\,CQ\) đồng quy.
Quảng cáo
Trả lời:

a) • Xét \(\Delta AQE\) và \(\Delta BCE\) có:
\(AE = BE\) (vì \(E\) là trung điểm của \(AB\))
\[\widehat {AEQ} = \widehat {BEP}\] (hai góc đối đỉnh)
\(QE = CE\) (gt)
Do đó \(\Delta AQE = \Delta BCE\,\,{\rm{(c}}{\rm{.g}}{\rm{.c)}}\).
Suy ra \[AQ = BC\] (hai cạnh tương ứng) (1)
• Xét \(\Delta APF\) và \(\Delta CBF\) có
\(PF = BF\) (gt)
\[\widehat {AFP} = \widehat {BFC}\] (hai góc đối đỉnh)
\(AE = BE\) (vì \(F\) là trung điểm của \(AC\))
Do đó \[\Delta APF = \Delta CBF\,\,{\rm{(c}}{\rm{.g}}{\rm{.c)}}\].
Suy ra \[AP = BC\] (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra \[AP = AQ\].
b) Ta có \(\widehat {QAB} = \widehat {ABC}\,;\,\,\widehat {PAC} = \widehat {ACB}\) (các cặp góc tương ứng của tam giác bằng nhau)
Xét tam giác \(ABC\) có \[\widehat {ABC} + \widehat {BAC} + \widehat {ACB} = 180^\circ \] (tổng ba góc trong một tam giác)
Suy ra \[\widehat {QAB} + \widehat {BAC} + \widehat {PAC} = \widehat {ABC} + \widehat {BAC} + \widehat {ACB} = 180^\circ \].
Do đó, ba điểm \(P,\,\,A\,,\,\,Q\) thẳng hàng.
c) Ta có \(\widehat {QAB} = \widehat {ABC}\,;\,\,\widehat {PAC} = \widehat {ACB}\) (cmt)
Suy ra \(BQ\,{\rm{//}}\,AC\) và \(CP\,{\rm{//}}\,AB\) (các cặp góc so le trong).
d) Ba đường thẳng \(AR\,,\,\,BP\,,\,\,CQ\) là ba đường trung tuyến của tam giác \[QRP\] nên đồng quy.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi số học sinh tổ một, tổ hai, tổ ba lần lượt là \(a;\,\,b;\,\,c\) (học sinh) \(\left( {a,\,b,\,c\, \in {\mathbb{N}^*},\,\,a,\,b,\,c < 52} \right)\).
Vì lớp 7A có 52 học sinh được chia làm ba tổ nên ta có: \(a + b + c = 52\) (1).
Số học sinh tổ một, tổ hai, tổ ba sau khi thêm bớt lần lượt là \(a - 1,\,\,b - 2,\,\,c + 3\) (học sinh).
Vì tổ một bớt đi 1 học sinh, tổ hai bớt đi 2 học sinh, tổ ba thêm vào 3 học sinh thì số học sinh của tổ một, tổ hai, tổ ba tỉ lệ nghịch với \(3;\,\,4;\,\,2\) do đó, ta có \(3\left( {a - 1} \right) = 4\left( {a - 2} \right) = 2\left( {c + 3} \right)\).
Suy ra \(\frac{{a - 1}}{4} = \frac{{b - 2}}{3} = \frac{{c + 3}}{6}\) (2)
Từ (1) và (2) áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{{a - 1}}{4} = \frac{{b - 2}}{3} = \frac{{c + 3}}{6} = \frac{{a - 1 + b - 2 + c + 3}}{{4 + 3 + 6}} = \frac{{52}}{{13}} = 4\)
Suy ra \(a - 1 = 16;\,\,b - 2 = 12;\,\,c + 3 = 24\).
Do đó, \(a = 17;\,\,b = 14;\,\,c = 21\).
Vậy số học sinh tổ một, tổ hai, tổ ba của lớp 7A lần lượt là 17 học sinh; 14 học sinh và 21 học sinh.
Lời giải
Hướng dẫn giải
Gọi tổng số vở ba lớp 7A, 7B, 7C nhận được là \[x\] \[\left( {x \in {\mathbb{N}^*}} \right)\].
Gọi số vở dự định chia cho ba lớp 7A, 7B, 7C lần lượt là \(a,b,c\).
Theo đề, ban đầu chia vở cho ba lớp theo tỉ lệ \(7;6;5\) nên ta có:
\(\frac{a}{7} = \frac{b}{6} = \frac{c}{5} = \frac{{a + b + c}}{{7 + 6 + 5}} = \frac{x}{{18}}\).
Suy ra \(a = \frac{{7x}}{{18}};b = \frac{{6x}}{{18}};c = \frac{{5x}}{{18}}\) (1)
Gọi số vở chia cho ba lớp 7A, 7B, 7C sau khi thay đổi là \(a',b',c'\). Ta có:
\(\frac{{a'}}{6} = \frac{{b'}}{5} = \frac{{c'}}{4} = \frac{{a' + b' + c'}}{{6 + 5 + 4}} = \frac{x}{{15}}\)
Suy ra \(a' = \frac{{6x}}{{15}};b' = \frac{{5x}}{{15}};c' = \frac{{4x}}{{15}}\) (2)
So sánh (1) và (2) nhận thấy \(a < a';b = b',c > c'\).
Do đó, lớp nhận được ít hơn 12 quyển là lớp 7C.
Suy tra \(\frac{{5x}}{{18}} - \frac{{4x}}{{15}} = 12\) hay \(\frac{x}{{90}} = 12\) nên \(x = 1080\) (quyển).
Số vở lớp 7A nhận trong thực tế là: \(a' = \frac{{6x}}{{15}} = \frac{{6.1080}}{{15}} = 432\) (quyển)
Số vở lớp 7B nhận trong thực tế là: \(b' = \frac{{5x}}{{15}} = \frac{{5.1080}}{{15}} = 360\) (quyển)
Số vở lớp 7C nhận trong thực tế là: \(c' = \frac{{4x}}{{15}} = \frac{{4.1080}}{{15}} = 288\) (quyển)
Vậy trong thực tế ba lớp 7A, 7B, 7C nhận được lần lượt 432 quyển, 360 quyển và 288 quyển.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.