Câu hỏi:

02/12/2025 17 Lưu

Hai khu vườn \(A\) và \(B\) nằm về một phía của con kênh \(d\). Xác định bên bờ kênh cùng phía với \(A\) và \(B\) một điểm \(C\) để đặt máy bơm tưới nước từ kênh tưới cho hai khu vườn sao cho tổng độ dài đường ống dẫn nước từ máy bơm đến hai khu vườn là ngắn nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi \[B'\] là điểm sao cho \(d\) là đường trung trực của \[BB'\].

Do \(d\) là đường trung trực của \[BB'\] và \[C\] thuộc \(d\) nên \[CB' = CB.\]

Khi đó \[AC + CB = AC + CB' \ge AB'\].

Khi đó, giá trị nhỏ nhất của \[AC + CB' = AB'\].

Mà \[AC + CB' = AB'\] khi \[C\] nằm giữa \(A\) và \[B'\].

Vậy \[C\] là điểm nằm giữa \(A\) và \[B'\] với \[B'\] là điểm sao cho \(d\) là đường trung trực của \[BB'\].

Hai khu vườn \(A\) và \(B\) nằm về một (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ABM\) và \(\Delta DCM\) có

\(MA = MD\) (giả thiết)

\(MB = MC\) (vì \[M\] là trung điểm)

\(\widehat {ABM} = \widehat {CMD}\) (đối đỉnh)

Do đó \(\Delta ABM = \Delta DCM\) (c.g.c)

b) Từ câu a: \(\Delta ABM = \Delta DCM\).

Suy ra \(\widehat {BAM} = \widehat {MDC}\).

Nên \(AB\,{\rm{//}}\,CD\) (hai góc ở vị trí so le trong bằng nhau).

Cho tam giác \(ABC\), gọi \(M\) là (ảnh 1)

c) Xét bất đẳng thức trong tam giác \[ACD\] có \(AD < AC + CD\).

Từ \(\Delta ABM = \Delta DCM\) suy ra \(AB = CD\) (hai cạnh tương ứng)

Do đó \(AD < AC + AB\) nên \(\frac{{AD}}{2} < \frac{{AB + AC}}{2}\).

Vậy \(AM < \frac{{AB + AC}}{2}\).

Lời giải

Hướng dẫn giải

Theo bài ra, ta có: \(\frac{{ab}}{{a + b}} = \frac{{bc}}{{b + c}} = \frac{{ca}}{{c + a}}\);

\(\frac{{a + b}}{{ab}} = \frac{{b + c}}{{bc}} = \frac{{c + a}}{{ca}}\);

\(\frac{1}{a} + \frac{1}{b} = \frac{1}{b} + \frac{1}{c} = \frac{1}{c} + \frac{1}{a}\).

Suy ra \(\frac{1}{a} = \frac{1}{c}\); \(\frac{1}{b} = \frac{1}{a}\) hay \(a = b = c\).

Với \(a\), \(b\), \(c\) là ba số khác 0, thay \(b = a\); \(c = a\) vào biểu thức \(M\), ta được:

\(M = \frac{{ab + bc + ca}}{{{a^2} + {b^2} + {c^2}}} = \frac{{{a^2} + {a^2} + {a^2}}}{{{a^2} + {a^2} + {a^2}}} = \frac{{3{a^2}}}{{3{a^2}}} = 1\).

Vậy \(M = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP