Câu hỏi:

02/12/2025 4 Lưu

Cho \(\frac{{{x^2} - yz}}{a} = \frac{{{y^2} - zx}}{b} = \frac{{{z^2} - xy}}{c}\). Chứng minh rằng \(\frac{{{a^2} - bc}}{x} = \frac{{{b^2} - ca}}{y} = \frac{{{c^2} - ab}}{z}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có: \(\frac{{{x^2} - yz}}{a} = \frac{{{y^2} - zx}}{b} = \frac{{{z^2} - xy}}{c}\)

Suy ra \(\frac{a}{{{x^2} - yz}} = \frac{b}{{{y^2} - zx}} = \frac{c}{{{z^2} - xy}}\)

Suy ra \({\left( {\frac{a}{{{x^2} - yz}}} \right)^2} = {\left( {\frac{b}{{{y^2} - zx}}} \right)^2} = {\left( {\frac{c}{{{z^2} - xy}}} \right)^2}\)

Lại có \[\frac{{{a^2}}}{{{{\left( {{x^2} - yz} \right)}^2}}} = \frac{{bc}}{{\left( {{y^2} - zx} \right)\left( {{z^2} - xy} \right)}} = \frac{{{a^2} - bc}}{{\left( {{x^4} - 2{x^2}yz + {y^2}{z^2}} \right) - \left( {{y^2}{z^2} - x{y^3} - x{z^3} + {x^2}yz} \right)}}\]

\[ = \frac{{{a^2} - bc}}{{{x^4} - 3{x^2}yz + x{y^3} + x{z^3}}} = \frac{{{a^2} - bc}}{{x\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)}}\]

Tương tự \[\frac{{{b^2}}}{{{{\left( {{y^2} - zx} \right)}^2}}} = \frac{{{b^2} - ac}}{{y\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)}}\];

\[\frac{{{c^2}}}{{{{\left( {{z^2} - xy} \right)}^2}}} = \frac{{{c^2} - ab}}{{z\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)}}\]

Suy ra \[\frac{{{a^2} - bc}}{{x\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)}} = \frac{{{b^2} - ac}}{{y\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)}} = \frac{{{c^2} - ab}}{{z\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)}}\]

Do đó \[\frac{{{a^2} - bc}}{x} = \frac{{{b^2} - ac}}{y} = \frac{{{c^2} - ab}}{z}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số người đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là \[a,{\rm{ }}b,{\rm{ }}c\] (người).

 Đội thứ nhất hoàn thành công việc trong 4 ngày, đội thứ hai trong 6 ngày nên \(4a = 6b\) hay \(\frac{a}{3} = \frac{b}{2}\).

Tổng số người của đội thứ nhất và đội thứ hai gấp năm lần số người của đội ba nên \(a + b = 5c\).
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3} = \frac{b}{2} = \frac{{a + b}}{{3 + 2}} = \frac{{5c}}{5} = c\) hay \(\frac{a}{3} = \frac{b}{2} = c\). Do đó \(4a = 6b = 12c\).

Vậy đội thứ 3 hoàn thành công việc trong 12 ngày.

Lời giải

Hướng dẫn giải

Theo bài ra, ta có: \(\frac{{ab}}{{a + b}} = \frac{{bc}}{{b + c}} = \frac{{ca}}{{c + a}}\);

\(\frac{{a + b}}{{ab}} = \frac{{b + c}}{{bc}} = \frac{{c + a}}{{ca}}\);

\(\frac{1}{a} + \frac{1}{b} = \frac{1}{b} + \frac{1}{c} = \frac{1}{c} + \frac{1}{a}\).

Suy ra \(\frac{1}{a} = \frac{1}{c}\); \(\frac{1}{b} = \frac{1}{a}\) hay \(a = b = c\).

Với \(a\), \(b\), \(c\) là ba số khác 0, thay \(b = a\); \(c = a\) vào biểu thức \(M\), ta được:

\(M = \frac{{ab + bc + ca}}{{{a^2} + {b^2} + {c^2}}} = \frac{{{a^2} + {a^2} + {a^2}}}{{{a^2} + {a^2} + {a^2}}} = \frac{{3{a^2}}}{{3{a^2}}} = 1\).

Vậy \(M = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP