Câu hỏi:

02/12/2025 149 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). Gọi \(M\), \(N\) lần lượt là trung điểm của các cạnh \(CD\)\(SD\). Biết rằng mặt phẳng \(\left( {BMN} \right)\) cắt đường thẳng \(SA\) tại \(P\). Tính tỉ số đoạn thẳng \(\frac{{SP}}{{PA}}\).

A. \(\frac{1}{3}\).      
B. \(\frac{1}{2}\).   
C. \(\frac{2}{5}\).        
D. \(\frac{1}{4}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O (ảnh 1)


Trong mặt phẳng \(\left( {ABCD} \right)\)\(BM \cap AD = E.\)

Trong mặt phẳng \(\left( {SAD} \right)\)\(EN \cap SA = P \Rightarrow \left( {BMN} \right) \cap SA = P.\)

Ta có \(DA = DE,3NP = NE.\)

Trong tam giác \(SAD\) ta có \(\frac{{PS}}{{PA}}.\frac{{EA}}{{ED}}.\frac{{ND}}{{NS}} = 1 \Rightarrow \frac{{PS}}{{PA}} = \frac{1}{2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

+ Ta có 1 hình tròn bán kính \(R = 6,\)hai hình tròn bán kính \(\frac{R}{2},\) bốn hình tròn bán kính \(\frac{R}{4},...\)

+ Gọi \(S\) là diện tích hình tròn bán kính \(R,\)\({S_1}\) là tổng diện tích các hình tròn bán kính \(\frac{R}{2},\)\({S_2}\) là tổng diện tích các hình tròn bán kính \(\frac{R}{4},\)\({S_3}\) là tổng diện tích các hình tròn bán kính \(\frac{R}{8},\)

Ta thấy \(S = 36\pi ,{S_1} = 18\pi ,{S_2} = 9\pi ,...\)lập thành một cấp nhân có số hạng đầu \({u_1} = {S_1},\) công bội \(q = \frac{1}{2} \Rightarrow \)\(S + {S_1} + {S_2} + ... = \frac{S}{{1 - q}} = 72\pi .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{5}{2}\).   
B. \(\frac{{25}}{4}\). 
C. -\(\frac{{25}}{4}\). 
D. \(\frac{5}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.  \(\mathop {\lim }\limits_{x \to + \infty } f(x) = f\left( {{x_0}} \right)\).      
B.  \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = f\left( {{x_0}} \right)\).               
C.  \(\mathop {\lim }\limits_{x \to + \infty } f(x) = {x_0}\).       
D.  \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = {x_0}\)   

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.  \(a = 20\). 
B.  \(a = 10\).        
C.  \(a = 5\)
D.  \(a = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP