Cho hình lăng trụ \[ABC.A'B'C'\]. Gọi \[H\] là trung điểm của \[A'B'\], \[M\]là trung điểm của \[AB\] . Giao tuyến của \(\left( {AHC'} \right)\) với \(\left( {CA'C'} \right)\) là.
Quảng cáo
Trả lời:
Chọn C

Ta có: \(\left( {AHC'} \right)\) và \(\left( {CA'C'} \right)\) có chung điểm \(C'\).
Xét mặt phẳng \(\left( {ACC'A'} \right)\). Gọi \[I\] là giao điểm của \(C'A\) và \(A'C\)
Giao tuyến của \(\left( {AHC'} \right)\) với \(\left( {CA'C'} \right)\) là \(C'I\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Ta có giá trị đại diện của nhóm \[\left[ {40;60} \right)\] là: \(\frac{{40 + 60}}{2} = 50\)
Câu 2
Lời giải
Chọn A
Ta có: \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 2x + 3}}{{x + 1}} = \frac{{{1^2} - 2.1 + 3}}{{1 + 1}} = 1\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
