Trong các khẳng định sau, khẳng định nào đúng?
Trong các khẳng định sau, khẳng định nào đúng?
Quảng cáo
Trả lời:
Chọn C
Ta có: \(\mathop {\lim }\limits_{} {q^n} = 0,\left| q \right| < 1\) mà \[\left| {\frac{2}{9}} \right| < 1\] nên \(\mathop {\lim }\limits_{} {\left( {\frac{2}{9}} \right)^n} = 0\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Ta có: \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 2x + 3}}{{x + 1}} = \frac{{{1^2} - 2.1 + 3}}{{1 + 1}} = 1\)
Lời giải

Ta có: \[A \in \left( {SAD} \right) \cap \left( {AMN} \right)\](1)
Trong mặt phẳng \[\left( {ABCD} \right)\] gọi \[O = AC \cap BD,\,\,J = AN \cap BD\].
Trong \[\left( {SAC} \right)\] gọi \[I = SO \cap AM\]
Trong \[\left( {SBD} \right)\]gọi \[K = IJ \cap SD \Rightarrow K \in \left( {SAD} \right) \cap \left( {AMN} \right)\]. (2)
Từ (1) và (2) ta có \[AK = \left( {SAD} \right) \cap \left( {AMN} \right)\]
Câu 3
C. \(MC//\left( {ABB'A'} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.