Câu hỏi:

02/12/2025 30 Lưu

Cho các số thực  thỏa mãn \({\log _{{x^2} + {y^2} + 2}}\left( {2x - 4y + 3} \right) \ge 1\). Giá trị lớn nhất của biểu thức \(P = 3x + 4y\) có dạng \(5\sqrt M  + m\) với \(M,m \in \mathbb{Z}\). Tính tổng \(M + m\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({\log _{{x^2} + {y^2} + 2}}\left( {2x - 4y + 3} \right) \ge 1\)\( \Leftrightarrow 2x - 4y + 3 \ge {x^2} + {y^2} + 2\)\( \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} \le 6\) là hình tròn (C) tâm \(I\left( {1; - 2} \right)\), bán kính \(R = \sqrt 6 \).

Ta lại có \(P = 3x + 4y \Rightarrow 3x + 4y - P = 0\) là phương trình đường thẳng d.

Để tồn tại cặp số \(x,y\) sao cho \(P\) đạt giá trị lớn nhất thì đường thẳng \(d\) và đường tròn \(\left( C \right)\) phải có điểm chung.

Khi đó \(d\left( {I,\left( d \right)} \right) \le R \Leftrightarrow \frac{{\left| {3 - 8 - P} \right|}}{5} \le \sqrt 6 \)\( \Leftrightarrow \left| {P + 5} \right| \le 5\sqrt 6 \)\( \Leftrightarrow  - 5\sqrt 6  \le P + 5 \le 5\sqrt 6 \)

\( \Leftrightarrow  - 5\sqrt 6  - 5 \le P \le 5\sqrt 6  - 5\).

Do đó \({P_{\max }} = 5\sqrt 6  - 5 \Rightarrow M = 6;m =  - 5\).

Vậy \(M + m = 6 + \left( { - 5} \right) = 1\).

Trả lời: 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tập xác định của hàm số \(D = \left[ { - \frac{3}{2}; + \infty } \right)\).

Đúng
Sai

b) Nghiệm của phương trình \(f\left( x \right) = 1\) là \(x = 0\).

Đúng
Sai

c) Tập nghiệm của bất phương trình \(f\left( x \right) < 2\) có đúng 3 số nguyên.

Đúng
Sai
d) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3.
Đúng
Sai

Lời giải

a) Điều kiện \(2x + 3 > 0 \Leftrightarrow x >  - \frac{3}{2}\).

Tập xác định của hàm số \(D = \left( { - \frac{3}{2}; + \infty } \right)\).

b) \(f\left( x \right) = 1\) \( \Leftrightarrow {\log _3}\left( {2x + 3} \right) = 1\)\( \Leftrightarrow 2x + 3 = 3\)\( \Leftrightarrow x = 0\).

c) Ta có \(f\left( x \right) < 2 \Leftrightarrow {\log _3}\left( {2x + 3} \right) < 2\)\( \Leftrightarrow 2x + 3 < 9\)\( \Leftrightarrow x < 3\).

Kết hợp với điều kiện ta có \(S = \left( { - \frac{3}{2};3} \right)\), mà \(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 1;0;1;2} \right\}\).

Vậy có 4 giá trị nguyên của \(x\) để \(f\left( x \right) < 2\).

d) Vì hàm số \(y = f\left( x \right) = {\log _3}\left( {2x + 3} \right)\) đồng biến trên \(\left( { - \frac{3}{2}; + \infty } \right)\) nên \(\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 0 \right) = 1;\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 3 \right) = 2\).

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên \(\left[ {0;3} \right]\) là 3.

Đáp án: a) Sai;      b) Đúng;      c) Sai;       d) Đúng.

Lời giải

a) Ban đầu có 1000 vi khuẩn nên \({P_0} = 1000\).

Sau hai ngày, số lượng vi khuẩn là \(P = 125\%  \cdot 1000 = 1250\).

Ta có \(P\left( 2 \right) = 1000 \cdot {a^2} \Leftrightarrow 1250 = 1000 \cdot {a^2} \Leftrightarrow {a^2} = \frac{5}{4} \Rightarrow a \approx 1,12\).

b) Số lượng vi khuẩn sau 5 ngày là \(P\left( 5 \right) = 1000 \cdot {\left( {1,12} \right)^5} \approx 1800\).

c) Với \(P\left( t \right) = 2{P_0} \Leftrightarrow 2{P_0} = {P_0} \cdot {1,12^t} \Leftrightarrow {1,12^t} = 2 \Leftrightarrow t = {\log _{1,12}}2 \approx 6,1\) ngày.

Vậy sau 6,1 ngày thì số lượng vi khuẩn bằng gấp đôi số lượng ban đầu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(D = \left[ {\frac{5}{2}; + \infty } \right)\). 

B. \(D = \left( { - \infty ;\frac{5}{2}} \right)\).  
C. \(D = \mathbb{R}\backslash \left\{ {\frac{5}{2}} \right\}\).
D. \(D = \left( {\frac{5}{2}; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP