Câu hỏi:

02/12/2025 9 Lưu

Cho phương trình \({4^x} + {2^{x + 1}} - 3 = 0\) có nghiệm duy nhất là \(a\). Tính \(P = a{\log _3}4 + 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\({4^x} + {2^{x + 1}} - 3 = 0\)\( \Leftrightarrow {2^{2x}} + 2 \cdot {2^x} - 3 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}{2^x} = 1\\{2^x} =  - 3\end{array} \right.\).

Vì \({2^x} > 0\) nên \({2^x} = 1\)\( \Leftrightarrow x = 0\).

Suy ra \(a = 0\). Do đó \(P = 0 \cdot {\log _3}4 + 1 = 1\).

Trả lời: 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề ta có \(22 + 50{e^{\frac{{ - 1}}{8}t}} = 45\)\( \Leftrightarrow {e^{\frac{{ - 1}}{8}t}} = \frac{{23}}{{50}}\)\( \Leftrightarrow \frac{{ - 1}}{8}t = \ln \frac{{23}}{{50}}\)\( \Leftrightarrow t = \ln \frac{{23}}{{50}}:\left( {\frac{{ - 1}}{8}} \right) \approx 6,21\).

Vậy sau khoảng 6,21 phút kể từ lúc pha chế xong thì nhiệt độ của đồ uống đó là 45°C.

Trả lời: 6,21.

Lời giải

Hàm số \(y = {c^x}\) nghịch biến nên \(0 < c < 1\).

Hàm số \(y = {b^x};y = {\log _a}x\) đồng biến nên \(a > 1;b > 1\).

Đường thẳng \(y = 2\) cắt đồ thị hàm số \(y = {b^x}\) tại điểm có hoành độ là \(x = {\log _b}2 \in \left( {0;1} \right)\).

Suy ra \(b > 2\).

Đường thẳng \(y = 2\) cắt đồ thị hàm số \(y = {\log _a}x\) tại điểm có hoành độ \(x = {a^2} \in \left( {2;3} \right)\).

Do đó \(c < a < b\). Chọn D.

Câu 3

a) \(m > 1\).

Đúng
Sai

b) \(4m + n = 4\).

Đúng
Sai

c) Biểu thức \(S = \frac{1}{m} + \frac{1}{n}\) đạt giá trị nhỏ nhất bằng \(\frac{5}{4}\).

Đúng
Sai
d) \({\log _a}b = \frac{n}{{4m}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP