Câu hỏi:

03/12/2025 24 Lưu

Số nghiệm của phương trình \(\tan x = 1\) trên đoạn\(\left[ { - 2\pi ;\frac{{5\pi }}{2}} \right]\) là bao nhiêu?

A. \(6.\)   
B. \(4.\)  
C. \(5.\) 
D. \(7.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

\[\begin{array}{l}\tan x = 1 \Leftrightarrow x = \frac{\pi }{4} + k\pi ,k \in Z\\x \in \left[ { - 2\pi ;\frac{{5\pi }}{2}} \right] \Leftrightarrow - 2\pi < \frac{\pi }{4} + k\pi < \frac{{5\pi }}{2} \Leftrightarrow - \frac{9}{4} < k < \frac{9}{4},k \in Z \Leftrightarrow k \in \{ - 2; - 1;0;1;2\} \end{array}\]

Vậy, phương trình \(\tan x = 1\) có tất cả 5 nghiệm trong khoảng \[\left[ { - 2\pi ;\frac{{5\pi }}{2}} \right]\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Mặt phẳng \(\left( {ABC} \right)\).        
B. Mặt phẳng \(\left( {BCD} \right)\).   
C. Mặt phẳng \(\left( {ABD} \right)\).      

D. Mặt phẳng \(\left( {ACD} \right)\).

Lời giải

Chọn B

Xét \(\Delta ABC\)\(M\) là trung điểm \(AB\), \(N\) là trung điểm \(AC\) nên \[MN\] là đường trung bình \(\Delta ABC\).

Suy ra \[MN//BC.\]

\(BC \subset \left( {BCD} \right)\) nên \(MN//\left( {BCD} \right)\).

Câu 2

A. \[ - 60^\circ \]. 
B. \[60^\circ \].
C. \[ - 60^\circ + k360^\circ \left( {k \in \mathbb{Z}} \right)\].  
D. \[60^\circ + k360^\circ ,\left( {k \in \mathbb{Z}} \right)\].

Lời giải

Chọn D

Câu 3

A. Ba điểm phân biệt.  
B. Một điểm và một đường thẳng.
C. Bốn điểm phân biệt.   
D. Hai đường thẳng cắt nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[EF//BC.\]          
B. \[EF//SC.\]     
C. \[EF//SB.\]          
D. \[EF//AC.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{6} + k\pi ,k \in \mathbb{Z}} \right\}\).              
B. \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\) .
C. \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{3} + k\pi ,k \in \mathbb{Z}} \right\}\) .             
D. \(D = \mathbb{R}\backslash \left\{ { - \frac{\pi }{6} + k\pi ,k \in \mathbb{Z}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP