Câu hỏi:

03/12/2025 25 Lưu

Cho cấp số cộng \[\left( {{u_n}} \right)\]\({u_1} = 1\)\({u_3} = 5\). Tính tổng \({S_{10}}\) của cấp số cộng.

  A. \({S_{10}} = 19\). 
B. \({S_{10}} = 100\).  
C. \({S_{10}} = 110\). 
D. \({S_{10}} = 21\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

           \[\begin{array}{l}{u_3} = 5\\ \Leftrightarrow {u_1} + 2d = 5\\ \Leftrightarrow d = 2\end{array}\]

           \({S_{10}} = \frac{{10}}{2}\left( {2.1 + \left( {10 - 1} \right).2} \right) = 100\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Mặt phẳng \(\left( {ABC} \right)\).        
B. Mặt phẳng \(\left( {BCD} \right)\).   
C. Mặt phẳng \(\left( {ABD} \right)\).      

D. Mặt phẳng \(\left( {ACD} \right)\).

Lời giải

Chọn B

Xét \(\Delta ABC\)\(M\) là trung điểm \(AB\), \(N\) là trung điểm \(AC\) nên \[MN\] là đường trung bình \(\Delta ABC\).

Suy ra \[MN//BC.\]

\(BC \subset \left( {BCD} \right)\) nên \(MN//\left( {BCD} \right)\).

Câu 2

A. \[ - 60^\circ \]. 
B. \[60^\circ \].
C. \[ - 60^\circ + k360^\circ \left( {k \in \mathbb{Z}} \right)\].  
D. \[60^\circ + k360^\circ ,\left( {k \in \mathbb{Z}} \right)\].

Lời giải

Chọn D

Câu 3

A. Ba điểm phân biệt.  
B. Một điểm và một đường thẳng.
C. Bốn điểm phân biệt.   
D. Hai đường thẳng cắt nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[EF//BC.\]          
B. \[EF//SC.\]     
C. \[EF//SB.\]          
D. \[EF//AC.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{6} + k\pi ,k \in \mathbb{Z}} \right\}\).              
B. \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\) .
C. \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{3} + k\pi ,k \in \mathbb{Z}} \right\}\) .             
D. \(D = \mathbb{R}\backslash \left\{ { - \frac{\pi }{6} + k\pi ,k \in \mathbb{Z}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP