Câu hỏi:

03/12/2025 32 Lưu

Cho hàm số  Cho hàm số   (ảnh 1)

.

Tìm a để hàm số liên tục tại điểm x0 = 1 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tập xác định: \(D = \mathbb{R};\,1 \in \mathbb{R}\,\,\)và \(f\left( 2 \right) = 2a\).

Để hàm số liên tục tại \({x_0} = 1\) thì \[\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\,\,\,\,\left( 1 \right)\].

Ta có \[\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = 2\]\[f\left( 1 \right) = 2a\].

Từ \[\,\left( 1 \right) \Leftrightarrow 2 = 2a \Rightarrow a = 1\].

Vậy \[a = 1\] thì hàm số liên tục tại \({x_0} = 1\).         

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Mặt phẳng \(\left( {ABC} \right)\).        
B. Mặt phẳng \(\left( {BCD} \right)\).   
C. Mặt phẳng \(\left( {ABD} \right)\).      

D. Mặt phẳng \(\left( {ACD} \right)\).

Lời giải

Chọn B

Xét \(\Delta ABC\)\(M\) là trung điểm \(AB\), \(N\) là trung điểm \(AC\) nên \[MN\] là đường trung bình \(\Delta ABC\).

Suy ra \[MN//BC.\]

\(BC \subset \left( {BCD} \right)\) nên \(MN//\left( {BCD} \right)\).

Câu 2

A. \[ - 60^\circ \]. 
B. \[60^\circ \].
C. \[ - 60^\circ + k360^\circ \left( {k \in \mathbb{Z}} \right)\].  
D. \[60^\circ + k360^\circ ,\left( {k \in \mathbb{Z}} \right)\].

Lời giải

Chọn D

Câu 3

A. Ba điểm phân biệt.  
B. Một điểm và một đường thẳng.
C. Bốn điểm phân biệt.   
D. Hai đường thẳng cắt nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[EF//BC.\]          
B. \[EF//SC.\]     
C. \[EF//SB.\]          
D. \[EF//AC.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{6} + k\pi ,k \in \mathbb{Z}} \right\}\).              
B. \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\) .
C. \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{3} + k\pi ,k \in \mathbb{Z}} \right\}\) .             
D. \(D = \mathbb{R}\backslash \left\{ { - \frac{\pi }{6} + k\pi ,k \in \mathbb{Z}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP