Câu hỏi:

03/12/2025 57 Lưu

Biết \[\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {4{x^2} + 1} - x}}{{5x}} = \frac{a}{b}\], trong đó \(a\), \[I = \int {f\left( x \right){\rm{d}}x = \int {{{\tan }^5}x{\rm{d}}x = } } \int {\frac{{{{\sin }^5}x}}{{{\rm{co}}{{\rm{s}}^5}x}}{\rm{d}}x} \] là các số nguyên và phân số \(\frac{a}{b}\) tối giản. Tính giá trị biểu thức \(P = a + b\).

A. \(P = 5\).    
B. \(P = 6\).   
C. \(P = 2\).   
D. \(P = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \[\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {4{x^2} + 1} - x}}{{5x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {4 + \frac{1}{{{x^2}}}} - x}}{{5x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {4 + \frac{1}{{{x^2}}}} - 1}}{5} = \frac{{ - 3}}{5}\].

Suy ra \(a = - 3;b = 5 \Rightarrow P = a + b = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\mathop {\lim }\limits_{x \to {x_{_0}}} \frac{{{\rm{f}}\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\]( với \[M \ne 0\]).                 
B. \[\mathop {\lim }\limits_{x \to {x_{_0}}} {\rm{ }}\left[ {{\rm{f}}\left( x \right) + g\left( x \right)} \right] = L + M\].
C. \[\mathop {\lim }\limits_{x \to {x_{_0}}} {\rm{ }}\left[ {{\rm{f}}\left( x \right).g\left( x \right)} \right] = L.M\].                         
D. \[\mathop {\lim }\limits_{x \to {x_{_0}}} {\rm{ }}\left[ {{\rm{f}}\left( x \right) - g\left( x \right)} \right] = M - L\].

Lời giải

Chọn D

Ta có \[\mathop {\lim }\limits_{x \to {x_{_0}}} {\rm{ }}\left[ {{\rm{f}}\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {x_{_0}}} {\rm{ f}}\left( x \right) - \mathop {\lim }\limits_{x \to {x_{_0}}} {\rm{ }}g\left( x \right) = L - M\].

Lời giải

Cho hình chóp S.ABCD đáy ABCD là hình vuông có cạnh bằng 6 (ảnh 1)

a. Ta có \[\frac{{SM}}{{SA}} = \frac{2}{3}\], \[\frac{{SN}}{{SB}} = \frac{2}{3}.\]\[ \Rightarrow \]\[MN\]//\[AB\]\[ \Rightarrow MN//\left( {ABCD} \right).\]

b. Ta có \[\left( \alpha \right)\parallel AB\]\[BC\] suy ra \[\left( \alpha \right)\parallel \left( {ABCD} \right).\]

Giả sử \[\left( \alpha \right)\] cắt các mặt bên \[\left( {SAB} \right),\,\,\left( {SBC} \right),\,\,\left( {SCD} \right),\,\,\left( {SDA} \right)\] lần lượt tại các điểm M, \[N,\,\,P,\,\,Q\] với \[N \in SB,\,\,P \in SC,\,\,Q \in SD\,\]suy ra \[\left( \alpha \right) \equiv \left( {MNPQ} \right)\,.\]

Khi đó \[MN\]//\[AB\]\[ \Rightarrow \,\,\,\frac{{SM}}{{SA}} = \frac{{MN}}{{AB}} = \frac{2}{3}\,.\]

Tương tự, ta có được \[\frac{{NP}}{{BC}} = \frac{{PQ}}{{CD}} = \frac{{QM}}{{DA}} = \frac{2}{3}\]\[MNPQ\] là hình vuông.

Suy ra \[{S_{MNPQ}} = {\left( {\frac{2}{3}} \right)^2}{S_{ABCD}} = \frac{4}{9}{S_{ABCD}} = \frac{4}{9}.6.6 = 16.\]

Câu 3

A. \(\lim c = 0\) (c là hằng số). 
B. \(\lim \frac{1}{n} = 0\).
C. \(\lim {q^n} = 0\).      
D. \(\lim {n^k} = + \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Điểm \[K\] (với \[O\] là trung điểm của \[BD\]\[K = SO \cap AI\]).
B. Điểm \[I\].
C. Điểm \[N\] (với \[O\] là giao điểm của \[AC\]\[BD\], \[N\] là trung điểm của \[SO\]).
D. Điểm \[M\] (với \[O\] là giao điểm của \[AC\]\[BD\], \[M\] là giao điểm \[SO\]\[AI\]).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[PQ{\rm{// }}(SAB)\;\]     
B. \[PQ{\rm{// }}(SBC)\;\]  
C. \[PQ{\rm{// }}(ABCD)\;\]     
D. \[PQ{\rm{// }}(SCD)\;\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({M_o} = \frac{{718}}{{39}}\).       
B. \({M_o} = \frac{{758}}{{39}}\).    
C. \({M_o} = \frac{{578}}{{39}}\). 
D. \({M_o} = \frac{{740}}{{39}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP