Cho hình thang ABCD có hai đáy là AB và CD. Hai đường chéo AC và BD cắt nhau tại điểm E. Hãy nêu tên các cặp hình tam giác có diện tích bằng nhau.
Cho hình thang ABCD có hai đáy là AB và CD. Hai đường chéo AC và BD cắt nhau tại điểm E. Hãy nêu tên các cặp hình tam giác có diện tích bằng nhau.
Câu hỏi trong đề: 2 bài tập Bài toán về hình thang có đáp án !!
Quảng cáo
Trả lời:
Hướng Dẫn Giải

Ta có:
\({S_{ACD}} = {S_{BCD}}\) (chung đáy CD và chiều cao tương ứng bằng chiều cao hình thang ABCD)
\({S_{DAB}} = {S_{CAB}}\) (chung đáy AB và chiều cao tương ứng bằng chiều cao hình thang ABCD)
Lại có: \({S_{ACD}} = {S_{EAD}} + {S_{ECD}}\) và \({S_{BCD}} = {S_{EBC}} + {S_{ECD}}\). Suy ra: \({S_{EAD}} = {S_{EBC}}\).
Vậy các cặp tam giác bằng nhau là: \({S_{ACD}} = {S_{BCD}}\); \({S_{DAB}} = {S_{CAB}}\); \({S_{EAD}} = {S_{EBC}}\)
Đáp Số: \({S_{ACD}} = {S_{BCD}}\); \({S_{DAB}} = {S_{CAB}}\); \({S_{EAD}} = {S_{EBC}}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng Dẫn Giải

a) Ta có: \({S_{AMCD}} = \frac{{(AM + CD) \times AD}}{2}\) và \({S_{NBCD}} = \frac{{(BN + CD) \times BC}}{2}\)
Mà AM = BN và AD = BC nên \({S_{AMCD}} = {S_{NBCD}} \to \frac{{{S_{AMCD}}}}{{{S_{NBCD}}}} = 1\).
b) Theo đề bài ta có: \(AM = \frac{1}{3} \times AB\)
\( \to {S_{AMCD}} = \frac{{(AM + CD) \times AD}}{2} = \frac{{\left( {\frac{1}{3} \times AB + AB} \right) \times AD}}{2} = \frac{2}{3} \times AB \times AD = \frac{2}{3} \times {S_{ABCD}}\)
Vậy \(\frac{{{S_{AMCD}}}}{{{S_{ABCD}}}} = \frac{2}{3}\)
Đáp Số: a) 1 b) \(\frac{2}{3}\)