Câu hỏi:

04/12/2025 5 Lưu

Phần 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hình chóp \(S.ABCD\) có đáy là hình thang đáy lớn \(AB\) và \(AB = 2CD\), \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(M,N\) là điểm trên cạnh \(SC,SB\) sao cho \(SM = 2MC\); \(SN = \frac{2}{3}SB\).

a) Đường thẳng \(AB\) chéo với đường thẳng \(SC\).

Đúng
Sai

b) \(MN\) song song với cạnh \(BC\).

Đúng
Sai

c) Nếu cạnh \(BC = 6\) thì \(MN = 3\).

Đúng
Sai
d) \(OM//SA\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy là hình thang đáy lớn AB và AB = 2CD, AC và BD cắt nhau tại O. Gọi M,N là điểm trên cạnh SC,SB sao cho SM = 2MC; SN = 2/3 SB (ảnh 1)

a) Có \(S.ABCD\)là hình chóp nên\(AB\) và \(SC\) là hai đường thẳng chéo nhau.

b) Vì \(\frac{{SM}}{{SC}} = \frac{{SN}}{{SB}} = \frac{2}{3} \Rightarrow MN//BC\).

c) Có \(MN//BC \Rightarrow \frac{{SM}}{{SC}} = \frac{{SN}}{{SB}} = \frac{{MN}}{{BC}} = \frac{2}{3}\)\( \Rightarrow MN = \frac{2}{3}BC = \frac{2}{3} \cdot 6 = 4\).

d) Vì \(\Delta OAB\) và \(\Delta OCD\) là hai tam giác đồng dạng nên \(\frac{{OC}}{{OA}} = \frac{{CD}}{{AB}} = \frac{1}{2} \Rightarrow OC = \frac{1}{2}OA \Rightarrow \frac{{CO}}{{CA}} = \frac{1}{3}\).

Xét \(\Delta SAC\) có \(\frac{{CM}}{{SC}} = \frac{{CO}}{{AC}} = \frac{1}{3} \Rightarrow OM//SA\).

Đáp án: a) Đúng;    b) Đúng;    c) Sai;    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hình chiếu song song của điểm O lên (SAD) theo phương của đường thẳng SB là: (ảnh 1)

Trong mặt phẳng \(\left( {SBD} \right)\), kẻ \(ON//SB\left( {N \in SD} \right)\) mà \(O\) là trung điểm \(BD\) nên \(N\) là trung điểm của \(SD\).

Do đó hình chiếu song song của điểm \(O\) lên \(\left( {SAD} \right)\) theo phương của đường thẳng \(SB\) là \(N\). Chọn D.

Câu 2

A. Đường thẳng MN.

B. Đường thẳng AM.

C. Đường thẳng DH (H là trọng tâm tam giác ABC).

D. Đường thẳng BG (G là trọng tâm tam giác ACD).

Lời giải

Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm của AB,BC. Giao tuyến của hai mặt phẳng (MCD) và (ADN) là: (ảnh 1)

Gọi \(H\) là giao điểm của \(AN\) và \(CM\).

Suy ra \(H\) là trọng tâm của tam giác \(ABC\).

Khi đó \(\left( {MCD} \right) \cap \left( {ADN} \right) = DH\). Chọn C.

Câu 3

A. Giao điểm của đường thẳng \(SB\) và \(MC\).   

B. Trung điểm của đoạn thẳng \(SB\). 

C. Giao điểm của đường thẳng \(SB\) và \(MD\). 
D. Giao điểm của đường thẳng \(SB\) và \(DC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( P \right)\) chứa một đường thẳng song song với \(\left( Q \right)\).

B. \(\left( P \right)\) chứa hai đường thẳng song song và hai đường thẳng này song song với \(\left( Q \right)\).

C. \(\left( P \right)\) chứa hai đường thẳng song song với \(\left( Q \right)\).

D. \(\left( P \right)\) chứa hai đường thẳng cắt nhau và hai đường thẳng này song song với \(\left( Q \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau.

B. Có duy nhất một mặt phẳng đi qua ba điểm phân biệt không thẳng hàng.

C. Có duy nhất một mặt phẳng chứa hai đường thẳng song song.

D. Có duy nhất một mặt phẳng đi qua ba điểm phân biệt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) \(IC//\left( {A'B'C'} \right)\).

Đúng
Sai

b) \(\left( {A'IC} \right)//\left( {BC'B'} \right)\).

Đúng
Sai

c) Gọi \(M,N\) lần lượt là trung điểm \(BB',CC'\). Khi đó \(\left( {EB'C'} \right)//\left( {IMN} \right)\).

Đúng
Sai
d) Giao tuyến của hai mặt phẳng \(\left( {A'IC} \right)\) và \(\left( {AJC'} \right)\) song song với mặt phẳng \(\left( {BCC'B'} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP