Câu hỏi:

04/12/2025 99 Lưu

Cho lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(I,J\) lần lượt là trung điểm \(AB,A'B'\), \(E\) là giao điểm của \(AJ\) và \(A'I\).

a) \(IC//\left( {A'B'C'} \right)\).

Đúng
Sai

b) \(\left( {A'IC} \right)//\left( {BC'B'} \right)\).

Đúng
Sai

c) Gọi \(M,N\) lần lượt là trung điểm \(BB',CC'\). Khi đó \(\left( {EB'C'} \right)//\left( {IMN} \right)\).

Đúng
Sai
d) Giao tuyến của hai mặt phẳng \(\left( {A'IC} \right)\) và \(\left( {AJC'} \right)\) song song với mặt phẳng \(\left( {BCC'B'} \right)\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho lăng trụ tam giác ABC.A'B'C'. Gọi I,J lần lượt là trung điểm AB,A'B', E là giao điểm của AJ và A'I. (ảnh 1)

a) Ta có \(IC//C'J\) mà \(C'J \subset \left( {A'B'C'} \right)\) nên \(IC//\left( {A'B'C'} \right)\).

b) Trong mặt phẳng \(\left( {ABB'A'} \right)\) có \(A'I\) cắt \(BB'\). Do đó \(\left( {A'IC} \right)\) không song song \(\left( {BC'B'} \right)\).

c) Trong mặt phẳng \(\left( {ABB'A'} \right)\) có \(IM\) cắt \(B'E\). Do đó \(\left( {EB'C'} \right)\) không song song \(\left( {IMN} \right)\).

d) Trong mặt phẳng \(\left( {ACC'A'} \right)\), giả sử \(F = AC' \cap A'C\) nên F là trung điểm của \(AC'\)(1).

Mà \(E = A'I \cap AJ\). Suy ra \(\left( {A'IC} \right) \cap \left( {AJC'} \right) = EF\).

Lại có \(AIJA'\) là hình bình hành nên \(E\)là trung điểm của \(AJ\) (2).

Từ (1) và (2), suy ra \(EF\) là đường trung bình của tam giác \(AJC'\). Suy ra \(EF//C'J\).

Mà \(C'J \subset \left( {A'B'C'} \right)\) nên \(EF//\left( {A'B'C'} \right)\).

Đáp án: a) Đúng;    b) Sai;    c) Sai;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Giao điểm của đường thẳng \(SB\) và \(MC\).   

B. Trung điểm của đoạn thẳng \(SB\). 

C. Giao điểm của đường thẳng \(SB\) và \(MD\). 
D. Giao điểm của đường thẳng \(SB\) và \(DC\).

Lời giải

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SA. Giao điểm của đường thẳng SB và mặt phẳng (CMD) là (ảnh 2)

Gọi \(O\) là giao điểm của \(AC\) và \(BD\).

Trong mặt phẳng \[\left( {SAC} \right)\], gọi \(H\) là giao điểm của \(SO\) và \(CM\).

Vì \(SO,CM\) là trung tuyến nên H là trọng tâm của tam giác \(SAC\) \( \Rightarrow \frac{{SH}}{{SO}} = \frac{2}{3}\).

Trong mặt phẳng \(\left( {SBD} \right)\), gọi \(I\) là giao điểm của \(DH\) và \(SB\).

Mà \(DH \subset \left( {MCD} \right)\) nên \(I = SB \cap \left( {MCD} \right)\).

Xét tam giác \(SBD\) có \(SO\) là trung tuyến và \(\frac{{SH}}{{SO}} = \frac{2}{3}\) nên \(H\) là trọng tâm của tam giác \(SBD\).

Suy ra \(I\) là trung điểm của \(SB\). Chọn B.

Lời giải

Cho hình chóp S.ABCD, có đáy là hình bình hành. Gọi M là trung điểm của cạnh SC, N là trung điểm của SD. Khi đó hai đường thẳng AB và MN là hai đường thẳng (ảnh 1)

\(M\) là trung điểm của cạnh \(SC\), \(N\) là trung điểm của \(SD\) nên \(MN\) là đường trung bình của \(\Delta SCD\).

Suy ra \(MN//CD\).

Mà \(AB//CD\) nên \(MN//AB\). Chọn C.

Câu 4

A. \(\left( P \right)\) chứa một đường thẳng song song với \(\left( Q \right)\).

B. \(\left( P \right)\) chứa hai đường thẳng song song và hai đường thẳng này song song với \(\left( Q \right)\).

C. \(\left( P \right)\) chứa hai đường thẳng song song với \(\left( Q \right)\).

D. \(\left( P \right)\) chứa hai đường thẳng cắt nhau và hai đường thẳng này song song với \(\left( Q \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau.

B. Có duy nhất một mặt phẳng đi qua ba điểm phân biệt không thẳng hàng.

C. Có duy nhất một mặt phẳng chứa hai đường thẳng song song.

D. Có duy nhất một mặt phẳng đi qua ba điểm phân biệt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP