Câu hỏi:

04/12/2025 8 Lưu

Cho biết mệnh đề nào sau đây sai?

A. Qua hai đường thẳng cắt nhau xác định duy nhất một mặt phẳng.
B. Qua ba điểm phân biệt không thẳng hàng xác định duy nhất một mặt phẳng.
C. Qua hai đường thẳng xác định duy nhất một mặt phẳng.
D. Qua một đường thẳng và một điểm không thuộc nó xác định duy nhất một mặt phẳng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chọn C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\)\(\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\).    
B. \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\)\(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).
C. \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\)\(\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\).    
D. \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\)\(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).

Lời giải

Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\lim \frac{1}{{{n^k}}} = 0\)\(\left( {k > 1} \right)\).  
B. \(\lim {q^n} = 0\)\(\left( {\left| q \right| > 1} \right)\).
C. \(\lim \frac{1}{n} = 0\).   

D. \(\lim {u_n} = c\) (\({u_n} = c\)là hằng số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Lim un = 1

B. Lim un = 0
C. \(\lim {u_n} = 2\). 
D. \(\lim {u_n}\) không tồn tại.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\left( {\sqrt 2 } \right)^n}\).
B. \({2^n}\).         
C. \({\left( {\frac{1}{2}} \right)^n}\).       
D. \({\left( { - \pi } \right)^n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP