Các nhà tâm lí học sử dụng mô hình hàm số mũ để mô phỏng quá trình học tập của một học sinh như sau \(f\left( t \right) = c\left( {1 - {e^{ - kt}}} \right)\), trong đó \(c\) là tổng số đơn vị kiến thức học sinh phải học, \(k\) (kiến thức/ngày) là tốc độ tiếp thu của học sinh, \(t\) (ngày) là thời gian học và \(f\left( t \right)\) là số đơn vị kiến thức học sinh đã học được. (nguồn: R.I. Charles et al, Algebra 2, Pearson). Giả sử một em học sinh phải tiếp thu 25 đơn vị kiến thức mới. Biết rằng tốc độ tiếp thu của em học sinh là \(k = 0,2\). Hỏi em học sinh sẽ nhớ được (khoảng) bao nhiêu đơn vị kiến thức mới sau 8 ngày? (Kết quả làm tròn đến hàng đơn vị).
Quảng cáo
Trả lời:
Ta có \(f\left( 8 \right) = 25\left( {1 - {e^{ - 0,2 \cdot 8}}} \right) \approx 20\).
Trả lời: 20.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Hàm số \(f\left( x \right)\) nghịch biến trên tập hợp \(\mathbb{R}\).
b) Có 30 giá trị \(m\) nguyên dương để bất phương trình \(\left( {f\left( x \right) - {5^m}} \right)\left( {25f\left( x \right) - 1} \right) < 0\) có không quá 31 nghiệm nguyên.
c) \(f\left( {{{\log }_5}3} \right) = 3\).
Lời giải
a) Hàm số \(f\left( x \right)\) đồng biến trên tập hợp \(\mathbb{R}\).
b) \(\left( {f\left( x \right) - {5^m}} \right)\left( {25f\left( x \right) - 1} \right) < 0\)\( \Leftrightarrow \left( {{5^x} - {5^m}} \right)\left( {25 \cdot {5^x} - 1} \right) < 0\).
TH1: \(\left\{ \begin{array}{l}{5^x} - {5^m} > 0\\25 \cdot {5^x} - 1 < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{5^x} > {5^m}\\{5^x} < {5^{ - 2}}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x > m\\x < - 2\end{array} \right. \Leftrightarrow m < x < - 2\) (loại).
TH2: \(\left\{ \begin{array}{l}{5^x} - {5^m} < 0\\25 \cdot {5^x} - 1 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{5^x} < {5^m}\\{5^x} > {5^{ - 2}}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x < m\\x > - 2\end{array} \right. \Leftrightarrow - 2 < x < m\).
Số nghiệm nguyên của bất phương trình là \(m + 1\).
Để bất phương trình có không quá 31 nghiệm nguyên thì \(m + 1 \le 31 \Leftrightarrow m \le 30\).
Vậy có 30 giá trị nguyên dương thỏa mãn yêu cầu đề bài.
c) \(f\left( {{{\log }_5}3} \right) = {5^{{{\log }_5}3}} = 3\).
d) Ta có \(f\left( x \right) + f\left( { - x} \right) = 6\)\( \Leftrightarrow {5^x} + {5^{ - x}} = 6\).
Ta có \(f\left( {2x} \right) + f\left( { - 2x} \right)\)\( = {5^{2x}} + {5^{ - 2x}}\)\( = {\left( {{5^x} + {5^{ - x}}} \right)^2} - 2 = 36 - 2 = 34\).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Câu 2
A. \(15\).
Lời giải
\({\log _a}\left( {{a^3}{b^4}} \right)\)\( = {\log _a}{a^3} + {\log _a}{b^4}\)\( = 3{\log _a}a + 4{\log _a}b\)\( = 3 + 4 \cdot 3 = 15\). Chọn A.
Câu 3
a) Tập xác định của hàm số là \(D = \mathbb{R}\).
b) \(x = - 1\) là nghiệm của bất phương trình \(f\left( x \right) < 0\).
c) Phương trình \(f\left( {x - 2} \right) = {\log _5}\left( {2{x^2} - x + 7} \right)\) có nghiệm duy nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(y = {\log _4}\left( {4 - {x^2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \({a^{\frac{{17}}{{12}}}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.