Câu hỏi:

05/12/2025 8 Lưu

Cho hàm số \(y = f\left( x \right) = \ln \frac{x}{{x + 1}} - 2025\).

a) Tập xác định của hàm số là \(\left( { - \infty ; - 1} \right) \cup \left( {0; + \infty } \right)\).
Đúng
Sai
b) Đạo hàm của hàm số là \(y' = - \frac{1}{{{x^2} + x}}\).
Đúng
Sai
c) Giá trị \(y'\left( 3 \right) = \frac{{13}}{{12}}\).
Đúng
Sai
d) Tổng \(T = f'\left( 1 \right) + f'\left( 2 \right) + ... + f'\left( {2025} \right)\) bằng \(\frac{{2025}}{{2026}}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Điều kiện \(\frac{x}{{x + 1}} > 0 \Leftrightarrow \left[ \begin{array}{l}x < - 1\\x > 0\end{array} \right.\).

Tập xác định của hàm số là \(D = \left( { - \infty ; - 1} \right) \cup \left( {0; + \infty } \right)\).

b) Ta có \(y' = \frac{{{{\left( {\frac{x}{{x + 1}}} \right)}^\prime }}}{{\frac{x}{{x + 1}}}} = \frac{1}{{{{\left( {x + 1} \right)}^2}}} \cdot \frac{{x + 1}}{x} = \frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{{{x^2} + x}}\).

c) \(y'\left( 3 \right) = \frac{1}{{{3^2} + 3}} = \frac{1}{{12}}\).

d) Có \(f'\left( x \right) = \frac{1}{{{x^2} + x}} = \frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{x} - \frac{1}{{x + 1}}\).

Do đó \(T = f'\left( 1 \right) + f'\left( 2 \right) + ... + f'\left( {2025} \right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{2025}} - \frac{1}{{2026}}\)\( = 1 - \frac{1}{{2026}} = \frac{{2025}}{{2026}}\).

Đáp án: a) Đúng;      b) Sai;      c) Sai;       d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(y' = \frac{2}{{{{\left( {x + 1} \right)}^2}}}\).

Với \(x = 1 \Rightarrow y = 1\).

Hệ số góc của tiếp tuyến tại điểm có hoành độ bằng 1 là \(y'\left( 1 \right) = \frac{2}{{{{\left( {1 + 1} \right)}^2}}} = \frac{1}{2}\).

Phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 1 là \(y = \frac{1}{2}\left( {x - 1} \right) + 1 = \frac{1}{2}x + \frac{1}{2}\).

Khi đó \(d\) cắt trục \(Ox,Oy\) lần lượt tại \(A\left( { - 1;0} \right),B\left( {0;\frac{1}{2}} \right)\).

Khi đó \(\Delta OAB\) vuông tại \(O\) và có diện tích là \({S_{\Delta OAB}} = \frac{1}{2}OA \cdot OB = \frac{1}{2} \cdot 1 \cdot \frac{1}{2} = \frac{1}{4} = 0,25\).

Trả lời: 0,25.

Lời giải

Với \(x \ne 1\) thì \(f\left( x \right)\) là tổng của 2019 số hạng đầu của cấp số nhân với \({u_1} = 1;q = x\) nên ta được:

\(f\left( x \right) = \frac{{1 - {x^{2019}}}}{{1 - x}} = \frac{{{x^{2019}} - 1}}{{x - 1}}\).

Khi đó \(f'\left( x \right) = \frac{{2019{x^{2018}}\left( {x - 1} \right) - \left( {{x^{2019}} - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}\).

Suy ra \(f'\left( 2 \right) = \frac{{2019 \cdot {2^{2018}}\left( {2 - 1} \right) - \left( {{2^{2019}} - 1} \right)}}{{{{\left( {2 - 1} \right)}^2}}} = 2017 \cdot {2^{2018}} + 1\).

Vậy \(a = 2017,b = 2018 \Rightarrow a + b = 4035\).

Trả lời: 4035.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP