Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\), \(\widehat {ABC} = 60^\circ \). Mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi \(H,M,N\) lần lượt là trung điểm của \(AB,SA,CD\).
a) Chứng minh \(SH \bot \left( {ABCD} \right)\) và tính theo \(a\) thể tích khối chóp \(S.ABCD\).
b) Gọi \(\alpha \) là số đo góc nhị diện \(\left[ {A,SC,B} \right]\). Tính \(\cos \alpha \).
c) Tính theo \(a\) khoảng cách giữa hai đường thẳng \(BM\) và \(SN\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\), \(\widehat {ABC} = 60^\circ \). Mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi \(H,M,N\) lần lượt là trung điểm của \(AB,SA,CD\).
a) Chứng minh \(SH \bot \left( {ABCD} \right)\) và tính theo \(a\) thể tích khối chóp \(S.ABCD\).
b) Gọi \(\alpha \) là số đo góc nhị diện \(\left[ {A,SC,B} \right]\). Tính \(\cos \alpha \).
c) Tính theo \(a\) khoảng cách giữa hai đường thẳng \(BM\) và \(SN\).
Quảng cáo
Trả lời:

a) Vì \(\Delta SAB\) đều \( \Rightarrow SH \bot AB\) mà \(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SH \bot \left( {ABCD} \right)\).
Vì \(\Delta SAB\) đều cạnh \(a\) nên \(SH = \frac{{a\sqrt 3 }}{2}\); \({S_{ABCD}} = AB \cdot BC \cdot \sin \widehat {ABC} = \frac{{{a^2}\sqrt 3 }}{2}\).
Khi đó \({V_{S.ABCD}} = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} \cdot \frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}}}{4}\).
b) Dễ thấy \(\Delta ABC\) đều \( \Rightarrow AC = BC = a\). Suy ra các tam giác \(SAC\) và \(SBC\) lần lượt cân tại \(A\) và \(B\).
Gọi \(I\) là trung điểm của \(SC\). Suy ra \(AI \bot SC\) và \(BI \bot SC\).
Do đó \(\widehat {AIB}\) là góc phẳng nhị diện \(\left[ {A,SC,B} \right]\).
Ta có \(S{C^2} = S{H^2} + C{H^2} = \frac{{3{a^2}}}{2} \Rightarrow S{I^2} = I{C^2} = \frac{{3{a^2}}}{8}\).
\(I{A^2} = S{A^2} - S{I^2} = \frac{{5{a^2}}}{8}\).
Tương tự \(I{B^2} = \frac{{5{a^2}}}{8}\).
Khi đó \(\cos \alpha = \cos \widehat {AIB} = \frac{{I{A^2} + I{B^2} - A{B^2}}}{{2IA \cdot IB}} = \frac{1}{5}\).
c) Ta có \(\Delta ACD\) đều \( \Rightarrow AN \bot CD \Rightarrow AN \bot AB \Rightarrow AN \bot \left( {SAB} \right) \Rightarrow \left( {SAN} \right) \bot \left( {SAB} \right)\).
\(\Delta SAB\) đều \( \Rightarrow BM \bot SA \Rightarrow BM \bot \left( {SAN} \right)\).
Dựng \(MK \bot SN\) tại \(K\)\( \Rightarrow MK\) là đoạn vuông góc chung của \(BM\) và \(SN\).
Khi đó \(d\left( {BM,SN} \right) = MK\).
Ta có \(MK = MS \cdot \sin \widehat {MSK} = MS \cdot \frac{{AN}}{{SN}} = MS \cdot \frac{{AN}}{{\sqrt {S{A^2} + A{N^2}} }} = \frac{a}{2} \cdot \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} }} = \frac{{a\sqrt {21} }}{{14}}\).
Vậy \(d\left( {BM,SN} \right) = \frac{{a\sqrt {21} }}{{14}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Có \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BD\) mà \(AC \bot BD\) nên \(BD \bot \left( {SOA} \right) \Rightarrow BD \bot SO\).
Lại có \(CO \bot BD\).
Do đó một góc phẳng của góc nhị diện \(\left[ {S,BD,C} \right]\) là \(\widehat {SOC}\). Chọn C.
Câu 2
Lời giải

Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AB\) và \(AB \bot AD\) nên \(AB \bot \left( {SAD} \right)\).
Do đó \(d\left( {B,\left( {SAD} \right)} \right) = AB = a\). Chọn D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

