Dãy số nào sau đây không phải là cấp số nhân?
Dãy số nào sau đây không phải là cấp số nhân?
Quảng cáo
Trả lời:
Chọn C
Dãy \[1\,;\, - 2\,;\,4\,;\, - 8\,;\,16\] là một cấp số nhân với công bội bằng \( - 2\).
Dãy \[1\,;\, - 1\,;\,1\,;\, - 1\,;\,1\] là một cấp số nhân với công bội bằng \( - 1\).
Dãy \[1\,;\, - 3\,;\,9\,;\, - 27\,;\,54\] không phải là một cấp số nhân vì \(\frac{{{u_4}}}{{{u_3}}} = - 3 \ne \frac{{{u_5}}}{{{u_4}}} = - 2\).
Dãy \[1\,;\, - 2\,;\,4\,;\, - 8\,;\,16\] là một cấp số nhân với công bội bằng \(2\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Hàm số \(f\left( x \right) = \frac{{2x}}{{{x^2} - 3x + 2}}\) xác định trên \(D = \mathbb{R}\backslash \left\{ {1;2} \right\}\) nên liên tục trên các khoảng \(\left( { - \infty ; - 1} \right),\left( {1;2} \right),\left( {2; + \infty } \right)\). Vì \(\left( { - 2;0} \right) \subset D\) nên hàm số cũng liên tục trên khoảng \(\left( { - 2;0} \right)\).
Lời giải
a. Ta có \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 9}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{x - 3}}\)\( = \mathop {\lim }\limits_{x \to 3} \left( {x + 3} \right)\)\( = 6\).

Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.