Câu hỏi:

06/12/2025 8 Lưu

Phần 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right) = \sqrt x \), có đồ thị \(\left( C \right)\).

a) Hàm số có đạo hàm trên \(\left( {0; + \infty } \right)\).
Đúng
Sai
b) \(f'\left( 9 \right) = \frac{1}{6}\).
Đúng
Sai
c) Hàm số \(y = f\left( {{x^2} + 1} \right)\) có đạo hàm là \(y' = \frac{1}{{2\sqrt {{x^2} + 1} }}\) trên \(\mathbb{R}\).
Đúng
Sai
d) Gọi \(M\) là điểm thuộc \(\left( C \right)\) có hoành độ bằng 4, tiếp tuyến của \(\left( C \right)\) tại \(M\) có hệ số góc bằng \(\frac{1}{2}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Hàm số có đạo hàm trên \(\left( {0; + \infty } \right)\).

b) \(y' = f'\left( x \right) = \frac{1}{{2\sqrt x }}\). Khi đó \(f'\left( 9 \right) = \frac{1}{{2\sqrt 9 }} = \frac{1}{6}\).

c) \(y = f\left( {{x^2} + 1} \right) = \sqrt {{x^2} + 1} \).

Khi đó \(y' = \frac{{{{\left( {{x^2} + 1} \right)}^\prime }}}{{2\sqrt {{x^2} + 1} }} = \frac{x}{{\sqrt {{x^2} + 1} }}\).

d) Hệ số góc của tiếp tuyến là \(y'\left( 4 \right) = \frac{1}{{2\sqrt 4 }} = \frac{1}{4}\).

Đáp án: a) Đúng;      b) Đúng;     c) Sai;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({x_1}{x_2} = \frac{3}{4}\).                      
B. \({x_1}{x_2} = 1\).         
C. \({x_1}{x_2} = - \frac{1}{4}\).                   
D. \({x_1}{x_2} = 0\).

Lời giải

\(f'\left( x \right) = \left( {1 - 2x} \right){e^{x - {x^2}}}\); \(f''\left( x \right) = - 2{e^{x - {x^2}}} + {\left( {1 - 2x} \right)^2}{e^{x - {x^2}}} = \left[ {{{\left( {1 - 2x} \right)}^2} - 2} \right]{e^{x - {x^2}}}\).

\(f''\left( x \right) = 0\)\( \Leftrightarrow {\left( {1 - 2x} \right)^2} - 2 = 0\)\( \Leftrightarrow 4{x^2} - 4x - 1 = 0\).

Ta có \({x_1};{x_2}\) là nghiệm của phương trình \(4{x^2} - 4x - 1 = 0\) nên theo định lí Vi ét ta có \({x_1}{x_2} = - \frac{1}{4}\). Chọn C.

Câu 2

A. \(y' = \cot x\).         
B. \(y' = - \frac{1}{{{{\sin }^2}x}}\).                         
C. \(y' = - \cot x\).      
D. \(y' = \frac{1}{{{{\cos }^2}x}}\).

Lời giải

\(y' = \frac{1}{{{{\cos }^2}x}}\). Chọn D.

Câu 3

A. \(1 - \cos x\).           
B. \(1 + \cos x\).          
C. \( - \cos x\).                                   
D. \(\cos x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP