Câu hỏi:

05/12/2025 19 Lưu

Hàm số \(y = {x^2}\cos x\) có đạo hàm là    

A. \(y' = 2x\sin x + {x^2}\cos x\).                                                                       
B. \(y' = 2x\sin x - {x^2}\cos x\).                 
C. \(y' = 2x\cos x - {x^2}\sin x\).                                                                       
D. \(y' = 2x\cos x + {x^2}\sin x\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(y' = 2x\cos x - {x^2}\sin x\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tập xác định của hàm số là \(\left( { - \infty ; - 1} \right) \cup \left( {0; + \infty } \right)\).
Đúng
Sai
b) Đạo hàm của hàm số là \(y' = - \frac{1}{{{x^2} + x}}\).
Đúng
Sai
c) Giá trị \(y'\left( 3 \right) = \frac{{13}}{{12}}\).
Đúng
Sai
d) Tổng \(T = f'\left( 1 \right) + f'\left( 2 \right) + ... + f'\left( {2025} \right)\) bằng \(\frac{{2025}}{{2026}}\).
Đúng
Sai

Lời giải

a) Điều kiện \(\frac{x}{{x + 1}} > 0 \Leftrightarrow \left[ \begin{array}{l}x < - 1\\x > 0\end{array} \right.\).

Tập xác định của hàm số là \(D = \left( { - \infty ; - 1} \right) \cup \left( {0; + \infty } \right)\).

b) Ta có \(y' = \frac{{{{\left( {\frac{x}{{x + 1}}} \right)}^\prime }}}{{\frac{x}{{x + 1}}}} = \frac{1}{{{{\left( {x + 1} \right)}^2}}} \cdot \frac{{x + 1}}{x} = \frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{{{x^2} + x}}\).

c) \(y'\left( 3 \right) = \frac{1}{{{3^2} + 3}} = \frac{1}{{12}}\).

d) Có \(f'\left( x \right) = \frac{1}{{{x^2} + x}} = \frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{x} - \frac{1}{{x + 1}}\).

Do đó \(T = f'\left( 1 \right) + f'\left( 2 \right) + ... + f'\left( {2025} \right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{2025}} - \frac{1}{{2026}}\)\( = 1 - \frac{1}{{2026}} = \frac{{2025}}{{2026}}\).

Đáp án: a) Đúng;      b) Sai;      c) Sai;       d) Đúng.

Câu 2

a) \(f'\left( x \right) = 3{x^2} - 6x\).
Đúng
Sai
b) Phương trình \({\left[ {f\left( x \right) \cdot g\left( x \right)} \right]^\prime } = 0\) có tập nghiệm \(T = \left\{ {0;2} \right\}\).
Đúng
Sai
c) Hệ số góc của tiếp tuyến với đồ thị \(\left( {{C_2}} \right)\) tại điểm có hoành độ \({x_0} = 1\) bằng \( - 1\).
Đúng
Sai
d) Tiếp tuyến của đồ thị \(\left( {{C_1}} \right)\) tại điểm có hoành độ \({x_0} = 1\) có phương trình là \(y = - 3x + 2\).
Đúng
Sai

Lời giải

a) \(y' = f'\left( x \right) = 3{x^2} - 6x\).

b) Có \({\left[ {f\left( x \right) \cdot g\left( x \right)} \right]^\prime }\)\( = {\left[ {\left( {{x^3} - 3{x^2} + 1} \right)\left( {1 - 2x} \right)} \right]^\prime }\)\( = \left( {3{x^2} - 6x} \right)\left( {1 - 2x} \right) - 2\left( {{x^3} - 3{x^2} + 1} \right)\)

\( = - 8{x^3} + 21{x^2} - 6x - 2\).

Khi đó \({\left[ {f\left( x \right) \cdot g\left( x \right)} \right]^\prime } = 0\)\( \Leftrightarrow - 8{x^3} + 21{x^2} - 6x - 2 = 0\).

Thay lần lượt \(x = 0;x = 2\) vào phương trình ta thấy không thỏa mãn.

Vậy \(T = \left\{ {0;2} \right\}\) không là tập nghiệm của phương trình\({\left[ {f\left( x \right) \cdot g\left( x \right)} \right]^\prime } = 0\).

c) Có \(y' = g'\left( x \right) = - 2\).

Hệ số góc của tiếp tuyến với đồ thị \(\left( {{C_2}} \right)\) tại điểm có hoành độ \({x_0} = 1\) bằng \( - 2\).

d) Hệ số góc của tiếp tuyến của đồ thị \(\left( {{C_1}} \right)\) tại điểm có hoành độ \({x_0} = 1\)\(f'\left( 1 \right) = 3 \cdot {1^2} - 6 \cdot 1 = - 3\).

Với \({x_0} = 1\) thì \({y_0} = - 1\).

Phương trình tiếp tuyến cần tìm là \(y = - 3\left( {x - 1} \right) - 1 = - 3x + 2\).

Đáp án: a) Đúng;      b) Sai;      c) Sai;       d) Đúng.

Câu 3

A. \(f'\left( 2 \right) = 3\).                               
B. \(f\left( x \right) = 2\).                    
C. \(f\left( x \right) = 3\).                                   
D. \(f'\left( 3 \right) = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(4\).                        
B. \(1\).                        
C. \(2\).                                 
D. \( - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(f'\left( 1 \right) = 0\).
Đúng
Sai
b) Có đúng một tiếp tuyến của \(\left( C \right)\) song song với trục \(Ox\).
Đúng
Sai
c) Phương trình tiếp tuyến tại điểm \(A\left( {2;1} \right)\) của \(\left( C \right)\)\(y = 3x - 5\).
Đúng
Sai
d) Tập nghiệm của phương trình \(f'\left( x \right) = 3\)\(S = \left\{ {0;2} \right\}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(12\).                      
B. \(24\).                      
C. \( - 12\).                                
D. \( - 24\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(y' = \frac{1}{{{{\cos }^2}2x}}\).            
B. \(y' = \frac{2}{{{{\cos }^2}2x}}\).                                
C. \(y' = \frac{{ - 2}}{{{{\cos }^2}2x}}\).                          
D. \(y' = \frac{2}{{{{\sin }^2}2x}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP