Câu hỏi:

05/12/2025 8 Lưu

Cho hàm số \(y = x \cdot {e^{4x}}\).

a) Tiếp tuyến của đồ thị tại điểm có hoành độ bằng 1 có hệ số góc \(k = 5{e^4}\).
Đúng
Sai
b) \(y' = {e^{4x}} + 4y\).
Đúng
Sai
c) Phương trình \(y' = \left( {1 + 4x} \right)\left( {{e^{2x}} + 2} \right)\) có đúng 1 nghiệm dương.
Đúng
Sai
d) Hàm số đã cho có đạo hàm cấp hai \(y'' = \left( {ax + b} \right) \cdot {e^{4x}}\) với \({a^2} + {b^2} = 41\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Có \(y' = {e^{4x}} + 4x{e^{4x}}\).

Tiếp tuyến của đồ thị tại điểm có hoành độ bằng 1 có hệ số góc \(k = y'\left( 1 \right) = {e^4} + 4{e^4} = 5{e^4}\).

b) \(y' = {e^{4x}} + 4x{e^{4x}}\)\( = {e^{4x}} + 4y\).

c) \(y' = \left( {1 + 4x} \right)\left( {{e^{2x}} + 2} \right)\)\( \Leftrightarrow {e^{4x}} + 4x{e^{4x}} = \left( {1 + 4x} \right)\left( {{e^{2x}} + 2} \right)\)\( \Leftrightarrow \left( {1 + 4x} \right){e^{4x}} - \left( {1 + 4x} \right)\left( {{e^{2x}} + 2} \right) = 0\)

\( \Leftrightarrow \left( {1 + 4x} \right)\left( {{e^{4x}} - {e^{2x}} + 2} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}1 + 4x = 0\\{e^{4x}} - {e^{2x}} + 2 = 0\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{1}{4}\\{e^{4x}} - {e^{2x}} + 2 = 0\left( {VN} \right)\end{array} \right.\).

Vậy nghiệm của phương trình là \(x = - \frac{1}{4}\).

Do đó phương trình \(y' = \left( {1 + 4x} \right)\left( {{e^{2x}} + 2} \right)\) có đúng 1 nghiệm âm.

d) \(y'' = {\left( {{e^{4x}} + 4x{e^{4x}}} \right)^\prime } = 4{e^{4x}} + 4{e^{4x}} + 16x{e^{4x}} = \left( {8 + 16x} \right){e^{4x}}\).

Suy ra \(a = 16;b = 8\). Vậy \({a^2} + {b^2} = 320\).

Đáp án: a) Đúng;      b) Đúng;      c) Sai;       d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(12\).                      
B. \(24\).                      
C. \( - 12\).                                
D. \( - 24\).

Lời giải

Ta có \(y' = 6{x^2}\). Khi đó \(y'\left( { - 2} \right) = 6 \cdot {\left( { - 2} \right)^2} = 24\). Chọn B.

Câu 2

A. \(4\).                        
B. \(1\).                        
C. \(2\).                                 
D. \( - 2\).

Lời giải

Ta có \[y' = \frac{{{{\left( {{x^2} + 3x + 2} \right)}^\prime }}}{{2\sqrt {{x^2} + 3x + 2} }} = \frac{{2x + 3}}{{2\sqrt {{x^2} + 3x + 2} }}\]. Suy ra \(a = 2\). Chọn C.

Câu 4

A. \( - 1\).                    
B. \(20\).                      
C. \(1\).                                 
D. \(9\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y' = \frac{{ - 5}}{{{{\left( {2x - 3} \right)}^2}}}\).                
B. \(y' = - \frac{1}{{{{\left( {2x - 3} \right)}^2}}}\).                
C. \(y' = \frac{5}{{{{\left( {2x - 3} \right)}^2}}}\).                
D. \(y' = \frac{1}{{{{\left( {2x - 3} \right)}^2}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(v = 9,8\;{\rm{m/s}}\).                              
B. \(v = 78,4\;{\rm{m/s}}\).         
C. \(v = 19,6\;{\rm{m/s}}\).         
D. \(v = 39,2\;{\rm{m/s}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(f'\left( 2 \right) = 3\).                               
B. \(f\left( x \right) = 2\).                    
C. \(f\left( x \right) = 3\).                                   
D. \(f'\left( 3 \right) = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP