Một dao động điều hòa có phương trình dao động là \(x\left( t \right) = 4\cos \left( {\frac{\pi }{4}t - \frac{\pi }{6}} \right)\), trong đó \(t > 0\) là thời gian dao động và được tính bằng giây; \(x\left( t \right)\) là li độ của dao động và được tính bằng centimet. Tại thời điểm lần đầu tiên vât đạt vận tốc bằng \(\frac{\pi }{2}\) (cm/s) thì gia tốc của vật bằng bao nhiêu?
Một dao động điều hòa có phương trình dao động là \(x\left( t \right) = 4\cos \left( {\frac{\pi }{4}t - \frac{\pi }{6}} \right)\), trong đó \(t > 0\) là thời gian dao động và được tính bằng giây; \(x\left( t \right)\) là li độ của dao động và được tính bằng centimet. Tại thời điểm lần đầu tiên vât đạt vận tốc bằng \(\frac{\pi }{2}\) (cm/s) thì gia tốc của vật bằng bao nhiêu?
Quảng cáo
Trả lời:
Vận tốc tức thời của vật là \(v\left( t \right) = x'\left( t \right) = - \pi \sin \left( {\frac{\pi }{4}t - \frac{\pi }{6}} \right)\) (cm/s).
Gia tốc tức thời của vật là \(a\left( t \right) = x''\left( t \right) = - \frac{{{\pi ^2}}}{4}\cos \left( {\frac{\pi }{4}t - \frac{\pi }{6}} \right)\) (cm/s2).
Ta có \(v\left( t \right) = \frac{\pi }{2}\left( {{\rm{cm/s}}} \right)\)\( \Leftrightarrow \sin \left( {\frac{\pi }{4}t - \frac{\pi }{6}} \right) = - \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}t = 8k\\t = \frac{{16}}{3} + 8k\end{array} \right.,k \in \mathbb{Z}\).
Với \(t = 8k\). Do \(t > 0 \Rightarrow 8k > 0 \Rightarrow k > 0\).
Mà \(k \in \mathbb{Z} \Rightarrow k \ge 1 \Rightarrow t \ge 8\) (1).
Với \(t = \frac{{16}}{3} + 8k\). Do \(t > 0 \Rightarrow \frac{{16}}{3} + 8k > 0 \Rightarrow k > - \frac{2}{3}\).
Mà \(k \in \mathbb{Z} \Rightarrow k \ge 0 \Rightarrow t \ge \frac{{16}}{3}\) (2).
Từ (1) và (2) suy ra lần đầu tiên vật đạt vận tốc \(\frac{\pi }{2}\left( {{\rm{cm/s}}} \right)\) tại thời điểm \(t = \frac{{16}}{3}\) (giây).
Suy ra \(a\left( {\frac{{16}}{3}} \right) = \frac{{{\pi ^2}\sqrt 3 }}{8}\left( {{\rm{cm/}}{{\rm{s}}^{\rm{2}}}} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có \(y' = 6{x^2}\). Khi đó \(y'\left( { - 2} \right) = 6 \cdot {\left( { - 2} \right)^2} = 24\). Chọn B.
Câu 2
Lời giải
Ta có \[y' = \frac{{{{\left( {{x^2} + 3x + 2} \right)}^\prime }}}{{2\sqrt {{x^2} + 3x + 2} }} = \frac{{2x + 3}}{{2\sqrt {{x^2} + 3x + 2} }}\]. Suy ra \(a = 2\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.