Câu hỏi:

05/12/2025 7 Lưu

Cho hàm số \(f\left( x \right) = \frac{{{x^2} - 3x + 2}}{{x - 1}}\). Hàm số liên tục trên khoảng nào sau đây?

A. \(\mathbb{R}\).  
B. \(\left( { - 2; + \infty } \right)\).        
C. \(\left( {2; + \infty } \right)\).   
D. \(\left( { - \infty ;2} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Xét \(f\left( x \right) = \frac{{{x^2} - 3x + 2}}{{x - 1}}\) có TXĐ \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Hàm phân thức hữu tỉ liên tục trên TXĐ nên đáp án C thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x = \pm \frac{1}{3}\).       
B. \(x = \pm \frac{1}{{\sqrt 3 }}\).      
C. \(x = \pm \sqrt 3 \).        
D. \(x = \pm 3\).

Lời giải

Chọn B

Để 3 số tạo thành CSN thì \(\left( {2x - 1} \right)\left( {2x + 1} \right) = {x^2} \Leftrightarrow 3{x^2} - 1 = 0\)

\( \Leftrightarrow x = \pm \frac{1}{{\sqrt 3 }}\).

Câu 2

A. \(\lim \frac{1}{n} = 0\). 
B. \(\lim {q^n} = 0\,\left( {\left| q \right| > 1} \right)\).
C. \(\lim \frac{1}{{{n^k}}} = 0\,\left( {k > 1} \right)\). 
D. \(\lim {u_n} = c\) (\({u_n} = c\) là hằng số).

Lời giải

Chọn B

Câu 3

A. \( - \infty \).        
B. \( + \infty \).    
C. \(3\). 
D. \(0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x = \frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}.\)   
B. \(x = \pm \frac{\pi }{4} + k2\pi ,k \in \mathbb{Z}.\)
C. \(x = - \frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}.\)                
D. \(x = \pm \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( - \frac{3}{4}\).      
B. \( - \frac{1}{2}\). 
C. \(1\).     
D. \(\frac{3}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP