Câu hỏi:

07/12/2025 16 Lưu

a) (0,5 điểm) Một cửa hàng bán lẻ bán hai loại hạt cà phê. Loại thứ nhất giá 140 nghìn đồng/kg và loại thứ hai giá 180 nghìn đồng/kg. Cửa hàng trộn \(x\) kg loại thứ nhất và \(y\) kg loại thứ hai sao cho hạt cà phê đã trộn có giá không quá 170 nghìn đồng/kg.

Hãy viết bất phương trình biểu thị mối liên hệ giữa \(x\) và \(y\) thỏa mãn điều kiện đề bài và biểu diễn miền nghiệm của bất phương trình tìm được trên mặt phẳng toạ độ.

b) (0,5 điểm) Một công ty cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê xe có hai loại xe \[A\] và \[B\], trong đó loại xe \[A\] có 10 chiếc và loại xe \[B\] có 9 chiếc. Một chiếc xe loại \[A\] cho thuê với giá 4 triệu đồng, một chiếc xe loại \[B\] cho thuê với giá 3 triệu. Biết rằng mỗi xe loại \[A\] có thể chở tối đa 20 người và \(0,6\) tấn hàng; mỗi xe loại \[B\] có thể chở tối đa 10 người và \(1,5\) tấn hàng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí bỏ ra là ít nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Theo đề bài ta có mối liên hệ giữa \(x\) và \(y\)

\[140x + 180y \le 170(x + y) \Leftrightarrow 30x - 10y \ge 0 \Leftrightarrow 3x - y \ge 0\].

Bước 1: Vẽ đường thẳng \(d:3x - y = 0\) trên mặt phẳng tọa độ \(Oxy\).

Bước 2: Lấy điểm \(M\left( {1;\,\,0} \right)\) không thuộc \(d\) và điểm \(M\) thỏa mãn \(3 \cdot 1 - 0 = 3 > 0\).

Một cửa hàng bán lẻ bán hai loại hạt cà phê. Loại thứ nhất giá 140 nghìn đồng/kg và loại thứ hai giá 180 nghìn đồng/kg. Cửa hàng trộn \(x\) kg loại thứ nhất và \(y\) kg loại thứ hai sao cho hạt cà phê đã trộn có giá không quá 170 nghìn đồng/kg. (ảnh 1)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng bờ \(d\) chứa điểm \(M\left( {1;\,\,0} \right)\) (miền không bị gạch).

b) Gọi \(x\) và \(y\) lần lượt là số xe \(A\) và \(B\). Khi đó số tiền cần bỏ ra thuê là \(f\left( {x;\,y} \right) = 4x + 3y\).

Ta có \(x\) xe loại \(A\) chở được \(20x\) người và \(0,6x\) tấn hàng.

Ta có \(y\) xe loại \(B\) chở được \(10y\) người và \(1,5y\) tấn hàng.

Khi đó số người chở được là \(20x + 10y\) và số tấn hàng chở được là \(0,6x + 1,5y\).

Ta có hệ bất phương trình \(\left\{ \begin{array}{l}20x + 10y \ge 140\\0,6x + 1,5y \ge 9\\0 \le x \le 10\\0 \le y \le 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x + y \ge 14\\2x + 3y \ge 30\\0 \le x \le 10\\0 \le y \le 9\end{array} \right.\) (*).

Biểu diễn miền nghiệm của hệ bất phương trình (*) ta được:

Một cửa hàng bán lẻ bán hai loại hạt cà phê. Loại thứ nhất giá 140 nghìn đồng/kg và loại thứ hai giá 180 nghìn đồng/kg. Cửa hàng trộn \(x\) kg loại thứ nhất và \(y\) kg loại thứ hai sao cho hạt cà phê đã trộn có giá không quá 170 nghìn đồng/kg. (ảnh 2)

Miền nghiệm của hệ là tứ giác \(ABCD\) (kể cả biên) với \(A\left( {5;\,4} \right),\,B\left( {10;\,2} \right),\,C\left( {10;\,9} \right),\,D\left( {\frac{5}{2};\,9} \right)\).

Bài toán trở thành tìm giá trị nhỏ nhất của hàm \(f\left( {x;\,y} \right) = 4x + 3y\) trên miền nghiệm của hệ (*).

Thay tọa độ các điểm \(A,\,B,\,C,\,D\) ta thấy hàm số đạt giá trị nhỏ nhất khi \(\left( {x;\,y} \right) = \left( {5;\,4} \right)\).

Vậy phải thuê 5 xe loại \(A\) và 4 xe loại \(B\) để chi phí là ít nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\widehat {ACB} = 180^\circ  - 60^\circ  = 120^\circ \).

Xét tam giác \(ABC\), có \(\widehat {BAC} = 180^\circ  - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 180^\circ  - \left( {30^\circ  + 120^\circ } \right) = 30^\circ \).

Do đó, tam giác \(ABC\) cân tại \(C\).

\( \Rightarrow AC = CB = 100\) m.

Ta có \(\widehat {ACH} = 90^\circ  - 60^\circ  = 30^\circ \).

Tam giác \(AHC\) vuông tại \(H\) nên \(AH = AC \cdot \sin \widehat {ACH} = 100 \cdot \sin 30^\circ  = 50\) m.

Vậy chiều cao của ngọn đồi là \(50\) m.

Lời giải

a) Hỏi tàu \(A\) cầ (ảnh 1)

Gọi thời gian để 2 tàu gặp nhau tại \(C\) là \(t\) (giờ, \(t > 0\)).

Quãng đường \(BC\) là \(20t\,\,\left( {{\rm{km}}} \right)\).

Quãng đường \(AC\) là \(30t\,\,\left( {{\rm{km}}} \right)\).

Áp dụng định lí sin cho tam giác \(ABC\), ta có

\[\frac{{BC}}{{\sin \alpha }} = \frac{{AC}}{{\sin B}} \Leftrightarrow \sin \alpha  = \frac{{BC \cdot \sin B}}{{AC}} = \frac{{20t \cdot \sin 124^\circ }}{{30t}} \approx 0,5527 \Rightarrow \alpha  \approx 34^\circ \].

Vậy tàu \(A\) chuyển động theo hướng tạo với vị trí ban đầu của tàu \(B\) một góc \(34^\circ \).

Xét tam giác \(ABC\), ta có \(\widehat C = 180^\circ  - \left( {\widehat B + \widehat A} \right) = 180^\circ  - \left( {124^\circ  + 34^\circ } \right) = 22^\circ \).

Áp dụng định lí sin, ta có

\(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}} \Leftrightarrow BC = \frac{{AB \cdot \sin A}}{{\sin C}} \Leftrightarrow 20t \approx \frac{{50 \cdot \sin 34^\circ }}{{\sin 22^\circ }} \Leftrightarrow t \approx 3,73\) (giờ).

Vậy sau khoảng \(3,73\) giờ thì tàu \(A\) đuổi kịp tàu \(B\).

Câu 3

A. \[ - 3x + y + 2 \ge 0\].         

B. \[ - 3x + y + 2 \le 0\].                             
C. \[3x + y - 2 \ge 0\].                             
D. \[3x + y - 2 \le 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\sqrt 3 \).            
B. \(0\).                    
C. \(1\).                           
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left\{ 2 \right\} \subset A\).              
B. \[\left[ { - 1;\,2} \right] \subset A\].                          
C. \[\left( { - 1;\,2} \right] \subset A\].                          
D. \(\left( { - 1;\,2} \right) \subset A\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{1}{2}\).     
B. \(0\).                    
C. \(1\).                           
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. "x,  x2+x+1<0" .                             
B. "x,  x2+x+10" .
C"x,  x2+x+10" .                             
D. "x,  x2+x+1>0".

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP