(1,0 điểm) Trên ngọn đồi có một cái tháp cao \(100\) m. Đỉnh tháp \(B\) và chân tháp \(C\) nhìn điểm \(A\) ở chân đồi dưới các góc tương ứng bằng \(30^\circ \) và \(60^\circ \) so với phương thẳng đứng. Xác định chiều cao \(HA\) của ngọn đồi.

Quảng cáo
Trả lời:
Ta có \(\widehat {ACB} = 180^\circ - 60^\circ = 120^\circ \).
Xét tam giác \(ABC\), có \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 180^\circ - \left( {30^\circ + 120^\circ } \right) = 30^\circ \).
Do đó, tam giác \(ABC\) cân tại \(C\).
\( \Rightarrow AC = CB = 100\) m.
Ta có \(\widehat {ACH} = 90^\circ - 60^\circ = 30^\circ \).
Tam giác \(AHC\) vuông tại \(H\) nên \(AH = AC \cdot \sin \widehat {ACH} = 100 \cdot \sin 30^\circ = 50\) m.
Vậy chiều cao của ngọn đồi là \(50\) m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \[T\] là tập hợp học sinh giỏi Toán của lớp.
Gọi \(V\) là tập hợp học sinh giỏi Văn của lớp.
Ta có \(T \cup V\) là tập hợp tất cả học sinh của lớp.
\(T \cap V\) là tập hợp các học sinh giỏi cả 2 môn Toán và Văn.
Ta có \(\left| {T \cup V} \right| = \left| T \right| + \left| V \right| - \left| {T \cap V} \right|\)
\(\left| {T \cap V} \right| = \left| T \right| + \left| V \right| - \left| {T \cup V} \right| = 35 + 25 - 50 = 10\).
Vậy lớp có 10 học sinh giỏi cả 2 môn Toán và Văn.
Câu 2
A. \[ - 3x + y + 2 \ge 0\].
Lời giải
Chọn A
Gọi \(d:y = ax + b\). Từ hình vẽ ta thấy đường thẳng \(d\) đi qua hai điểm \(\left( {\frac{2}{3};\,0} \right)\) và \(\left( {0;\, - 2} \right)\) nên ta có hệ phương trình \(\left\{ \begin{array}{l}0 = \frac{2}{3}a + b\\ - 2 = a \cdot 0 + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - 2\end{array} \right.\). Vậy \(d:y = 3x - 2\) hay \(d: - 3x + y + 2 = 0\).
Xét gốc tọa độ \(O\left( {0;\,\,0} \right)\) thuộc phần không bị gạch, ta có \(\left( { - 3} \right) \cdot 0 + 0 + 2 = 2 > 0\) nên điểm \(O\left( {0;\,\,0} \right)\) thuộc miền nghiệm của bất phương trình \[ - 3x + y + 2 \ge 0\].
Vậy phần không gạch chéo (kể cả bờ) ở hình trên biểu diễn miền nghiệm của bất phương trình\[ - 3x + y + 2 \ge 0\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


