(1,0 điểm) Trên ngọn đồi có một cái tháp cao \(100\) m. Đỉnh tháp \(B\) và chân tháp \(C\) nhìn điểm \(A\) ở chân đồi dưới các góc tương ứng bằng \(30^\circ \) và \(60^\circ \) so với phương thẳng đứng. Xác định chiều cao \(HA\) của ngọn đồi.

Quảng cáo
Trả lời:
Ta có \(\widehat {ACB} = 180^\circ - 60^\circ = 120^\circ \).
Xét tam giác \(ABC\), có \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 180^\circ - \left( {30^\circ + 120^\circ } \right) = 30^\circ \).
Do đó, tam giác \(ABC\) cân tại \(C\).
\( \Rightarrow AC = CB = 100\) m.
Ta có \(\widehat {ACH} = 90^\circ - 60^\circ = 30^\circ \).
Tam giác \(AHC\) vuông tại \(H\) nên \(AH = AC \cdot \sin \widehat {ACH} = 100 \cdot \sin 30^\circ = 50\) m.
Vậy chiều cao của ngọn đồi là \(50\) m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi thời gian để 2 tàu gặp nhau tại \(C\) là \(t\) (giờ, \(t > 0\)).
Quãng đường \(BC\) là \(20t\,\,\left( {{\rm{km}}} \right)\).
Quãng đường \(AC\) là \(30t\,\,\left( {{\rm{km}}} \right)\).
Áp dụng định lí sin cho tam giác \(ABC\), ta có
\[\frac{{BC}}{{\sin \alpha }} = \frac{{AC}}{{\sin B}} \Leftrightarrow \sin \alpha = \frac{{BC \cdot \sin B}}{{AC}} = \frac{{20t \cdot \sin 124^\circ }}{{30t}} \approx 0,5527 \Rightarrow \alpha \approx 34^\circ \].
Vậy tàu \(A\) chuyển động theo hướng tạo với vị trí ban đầu của tàu \(B\) một góc \(34^\circ \).
Xét tam giác \(ABC\), ta có \(\widehat C = 180^\circ - \left( {\widehat B + \widehat A} \right) = 180^\circ - \left( {124^\circ + 34^\circ } \right) = 22^\circ \).
Áp dụng định lí sin, ta có
\(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}} \Leftrightarrow BC = \frac{{AB \cdot \sin A}}{{\sin C}} \Leftrightarrow 20t \approx \frac{{50 \cdot \sin 34^\circ }}{{\sin 22^\circ }} \Leftrightarrow t \approx 3,73\) (giờ).
Vậy sau khoảng \(3,73\) giờ thì tàu \(A\) đuổi kịp tàu \(B\).
Câu 2
A. \[ - 3x + y + 2 \ge 0\].
Lời giải
Chọn A
Gọi \(d:y = ax + b\). Từ hình vẽ ta thấy đường thẳng \(d\) đi qua hai điểm \(\left( {\frac{2}{3};\,0} \right)\) và \(\left( {0;\, - 2} \right)\) nên ta có hệ phương trình \(\left\{ \begin{array}{l}0 = \frac{2}{3}a + b\\ - 2 = a \cdot 0 + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - 2\end{array} \right.\). Vậy \(d:y = 3x - 2\) hay \(d: - 3x + y + 2 = 0\).
Xét gốc tọa độ \(O\left( {0;\,\,0} \right)\) thuộc phần không bị gạch, ta có \(\left( { - 3} \right) \cdot 0 + 0 + 2 = 2 > 0\) nên điểm \(O\left( {0;\,\,0} \right)\) thuộc miền nghiệm của bất phương trình \[ - 3x + y + 2 \ge 0\].
Vậy phần không gạch chéo (kể cả bờ) ở hình trên biểu diễn miền nghiệm của bất phương trình\[ - 3x + y + 2 \ge 0\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


