Thể tích \(V\) của một vật thể được giới hạn bởi hai mặt phẳng \(x = a,x = b\), biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\left( {a \le x \le b} \right)\) thì được thiết diện có diện tích là \(S\left( x \right)\). Giả sử hàm số \(S\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\). Mệnh đề nào sau đây đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có \(V = \int\limits_a^b {S\left( x \right)dx} \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Đ, b) S, c) Đ, d) S
a) Ta có \(s\left( t \right) = \int {v\left( t \right)dt} = \int {\left( { - 10t + 30} \right)dt} = - 5{t^2} + 30t + C\).
Do \(s\left( 0 \right) = 0\) nên \(C = 0\). Vậy \(s\left( t \right) = - 5{t^2} + 30t\).
b) Ô tô dừng hẳn khi \(v\left( t \right) = 0 \Leftrightarrow - 10t + 30 = 0 \Leftrightarrow t = 3\).
c) Sau 3 giây kể từ lúc đạp phanh, quãng đường xe ô tô di chuyển được là:
\(s\left( 3 \right) = - {5.3^2} + 30.3 = 45\) (m).
d) Đổi 108 km/h = 30m/s.
Quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện ra chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là \(30 + 45 = 75\) (m).
Lời giải
Ta có \(\int\limits_0^1 {f\left( {2x} \right)dx} = 6\)\( \Leftrightarrow \frac{1}{2}\int\limits_0^1 {f\left( {2x} \right)d\left( {2x} \right)} = 6\)\( \Leftrightarrow \int\limits_0^2 {f\left( t \right)dt} = 12\)
\( \Rightarrow F\left( 2 \right) - F\left( 0 \right) = 12 \Rightarrow F\left( 0 \right) - F\left( 2 \right) = - 12\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

