Câu hỏi:

09/12/2025 27 Lưu

Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):x + 2y + 3z - 1 = 0\). Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( P \right)\)?     

A. \(\overrightarrow n = \left( {1;3; - 1} \right)\).                      
B. \(\overrightarrow n = \left( {2;3; - 1} \right)\).                  
C. \(\overrightarrow n = \left( {1;2;3} \right)\).                      
D. \(\overrightarrow n = \left( {1;2; - 1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Ta có \(\overrightarrow {{n_P}} = \left( {1;2;3} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\int\limits_0^1 {f\left( {2x} \right)dx} = 6\)\( \Leftrightarrow \frac{1}{2}\int\limits_0^1 {f\left( {2x} \right)d\left( {2x} \right)} = 6\)\( \Leftrightarrow \int\limits_0^2 {f\left( t \right)dt} = 12\)

\( \Rightarrow F\left( 2 \right) - F\left( 0 \right) = 12 \Rightarrow F\left( 0 \right) - F\left( 2 \right) = - 12\).

Lời giải

Trả lời: 12

Quãng đường mà vật dịch chuyển được trong 4 giây đầu tiên bằng

\(\int\limits_0^4 {v\left( t \right)dt} \)\( = \int\limits_0^2 {2tdt}  + \int\limits_2^4 {4dt} \)\( = \left. {{t^2}} \right|_0^2 + \left. {4t} \right|_2^4\)\( = 4 + 16 - 8 = 12\) (m).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Công thức biểu diễn hàm số \(s\left( t \right) = - 5{t^2} + 30t\left( {\rm{m}} \right)\).
Đúng
Sai
b) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 6 giây.
Đúng
Sai
c) Sau 3 giây kể từ lúc đạp phanh, quãng đường xe ô tô di chuyển được là 45 m.
Đúng
Sai
d) Quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là 120 m.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(S = \int\limits_0^1 {\left( {{x^2} + 1} \right)dx} \). 
B. \(S = \int\limits_1^2 {\left( { - {x^2} - 1} \right)dx} \). 
C. \(S = \int\limits_1^2 {\left( {{x^2} + 1} \right)dx} \). 
D. \(S = \int\limits_0^2 {\left( {{x^2} + 1} \right)dx} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP