Câu hỏi:

10/12/2025 3 Lưu

Phần 1. Câu trắc nghiệm nhiều phương án chọn.

Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án đúng nhất.

Rút gọn biểu thức \(P = {x^{\frac{1}{3}}}.\sqrt[4]{x}\), với \(x\) là số thực dương.

A. \[P = {x^{\frac{1}{{12}}}}\]. 

B. \[P = {x^{\frac{7}{{12}}}}\].
C. \[P = {x^{\frac{2}{3}}}\]. 
D. \[P = {x^{\frac{2}{7}}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(P = {x^{\frac{1}{3}}}.\sqrt[4]{x} = {x^{\frac{1}{3}}}.{x^{\frac{1}{4}}} = {x^{\frac{7}{{12}}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau.

B. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.

C. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì vuông góc với nhau.

D. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường thẳng còn lại.

Lời giải

Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.

Lời giải

Gọi \(A\) là biến cố "Minh được tham gia"; \(B\) là biến cố "Hùng được tham gia cuộc thi"; \(X\) là biến cố "Cả hai bạn được tham gia cuộc thi".

Vì \(A\) và \(B\) là hai biến cố độc lập và \(P(X) = P(A) \cdot P(B) = 0,45 \cdot 0,68 = 0,306\).

Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Mặt phẳng \(\left( {SBD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).  

B. Mặt phẳng \(\left( {SBC} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). 

C. Mặt phẳng \(\left( {SAD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). 

D. Mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP