Trong một hộp kín có 10 quả bóng màu xanh, 12 quả bóng màu đỏ, có cùng kích thước và khối lượng. Lấy ngẫu nhiên từ hộp ra 2 quả bóng. Gọi \(A\) là biến cố "Hai quả lấy ra cùng màu" và \(B\) là biến cố "Có ít nhất một quả màu xanh". Khẳng định nào sau đây là đúng khi nói về cặp biến cố \(A\) và \(B\) ?
Trong một hộp kín có 10 quả bóng màu xanh, 12 quả bóng màu đỏ, có cùng kích thước và khối lượng. Lấy ngẫu nhiên từ hộp ra 2 quả bóng. Gọi \(A\) là biến cố "Hai quả lấy ra cùng màu" và \(B\) là biến cố "Có ít nhất một quả màu xanh". Khẳng định nào sau đây là đúng khi nói về cặp biến cố \(A\) và \(B\) ?
A. Hai biến cố \(A\) và \(B\) là hai biến cố độc lập
B. Hai biến cố \(A\) và \(B\) là hai biến cố đối nhau
C. Hợp của hai biến cố \(A\) và \(B\) bằng không gian mẫu
Quảng cáo
Trả lời:
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Bất phương trình có chung tập nghiệm với \({6^{ - x - 2}} \le {6^{ - 2x}}\)
b) \(\mathop {\lim }\limits_{x \to b} \left( {3{x^2} + 2} \right) = b\)
c) \(\left[ {a;b} \right)\backslash \left( {3; + \infty } \right) = \left[ { - \frac{2}{3};3} \right]\)
Lời giải
|
a) Sai |
b) Đúng |
c) Đúng |
d) Đúng |
\({\left( {\frac{1}{6}} \right)^{x + 2}} \le {\left( {\frac{1}{{36}}} \right)^{ - x}} \Leftrightarrow {6^{ - x - 2}} \le {6^{2x}} \Leftrightarrow - x - 2 \le 2x \Leftrightarrow x \ge - \frac{2}{3}\) (do \(6 > 1\)).
Một cách giải khác:
\({\left( {\frac{1}{6}} \right)^{x + 2}} \le {\left( {\frac{1}{{36}}} \right)^{ - x}} \Leftrightarrow {\left( {\frac{1}{6}} \right)^{x + 2}} \le {\left( {\frac{1}{6}} \right)^{ - 2x}} \Leftrightarrow x + 2 \ge - 2x \Leftrightarrow x \ge - \frac{2}{3}\) (do. \(0 < \frac{1}{6} < 1\))
Vậy nghiệm của bất phương trình là \(x \ge - \frac{2}{3}\).
Lời giải
Trả lời: \(\frac{7}{{12}}{a^3}\)
Lời giải
\(\begin{array}{l}V = \frac{1}{3}\left( {{S_{ABCD}} + {S_{MNPQ}} + \sqrt {{S_{ABCD}} \cdot {S_{MNPQ}}} } \right) \cdot O{O^\prime }\\{S_{ABCD}} = {a^2}\\{S_{MNPQ}} = {\left( {\frac{1}{2}a} \right)^2} = \frac{1}{4}{a^2}\\ \Rightarrow V = \frac{1}{3}\left( {{a^2} + \frac{1}{4}{a^2} + \sqrt {{a^2} \cdot \frac{1}{4}{a^2}} } \right) \cdot a = \frac{7}{{12}}{a^3}\end{array}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\sqrt {10} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.