Câu hỏi:

10/12/2025 2 Lưu

Gieo hai con súc xắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc xắc bằng 7 là:

A. \(P = \frac{7}{{36}}\). 

B. \(P = \frac{7}{{23}}\).  
C. \(P = \frac{1}{6}\). 
D. \(P = \frac{5}{{36}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số phần tử của không gian mẫu là: \(|\Omega | = 6.6 = 36\).

Gọi biến cố \(A\) : "Tổng số chấm trên mặt xuất hiện của hai con xúc xắc bằng 7 ".

Các kết quả thuận lợi cho A là: \(A = \{ (1;6);(2;5);(3;4);(4;3);(5;2);(6;1)\} \).

Do đó, \({n_A} = 6\). Vậy \(P(A) = \frac{6}{{36}} = \frac{1}{6}\).

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(P = {x^{\frac{1}{3}}}.\sqrt[4]{x} = {x^{\frac{1}{3}}}.{x^{\frac{1}{4}}} = {x^{\frac{7}{{12}}}}\).

Câu 2

A. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau.

B. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.

C. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì vuông góc với nhau.

D. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường thẳng còn lại.

Lời giải

Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Mặt phẳng \(\left( {SBD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).  

B. Mặt phẳng \(\left( {SBC} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). 

C. Mặt phẳng \(\left( {SAD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). 

D. Mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP