Câu hỏi:

10/12/2025 2 Lưu

Cho hình chóp \(S.ABCD\) có \(SC = x\) \(\left( {0 < x < \sqrt 3 } \right)\), các cạnh còn lại đều bằng \(1\) (tham khảo hình vẽ). Biết rằng thể tích khối chóp \(S.ABCD\) lớn nhất khi và chỉ khi \(x = \frac{{\sqrt a }}{b}\) \(\left( {a,b \in {\mathbb{Z}^ + }} \right)\). Các mệnh đề sau đúng hay sai?

Media VietJack

a) \({a^2} - 2b < 30\).    

Đúng
Sai
b) \({a^2} - 8b = 20\).  
Đúng
Sai
c) \({b^2} - a <  - 2\).   
Đúng
Sai
d) \(2a - 3{b^2} =  - 1\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Đúng

c) Sai

d) Sai

 

Gọi \(H\) là hình chiếu của \(S\) lên mặt phẳng \(\left( {ABCD} \right)\), vì \(SA = SB = SD\) nên \(H \in AO\) với \(O\) là trung điểm của \(BD\)

Ta xét hai tam giác \(SBD\) và \(ABD\) có cạnh \(BD\) chung, \(SB = AB\), \(SD = AD\) nên \(\Delta SBD = \Delta ABD\) suy ra \(AO = SO = OC\) do đó \(\Delta SAC\) vuông tại \(S\).

Ta có \(AO = \frac{1}{2}AC = \frac{1}{2}\sqrt {1 + {x^2}} \) \( \Rightarrow BO = \frac{{\sqrt {3 - {x^2}} }}{2}\)\( \Rightarrow {S_{ABCD}} = \frac{{\sqrt {\left( {1 + {x^2}} \right)\left( {3 - {x^2}} \right)} }}{2}\) \(\left( {0 < x < \sqrt 3 } \right)\)

Mặt khác \(SH = \frac{{SA.SC}}{{\sqrt {S{A^2} + S{C^2}} }}\)\( = \frac{x}{{\sqrt {1 + {x^2}} }}\)

Vậy \({V_{S.ABCD}} = \frac{1}{3}SH.{S_{ABCD}}\)\( = \frac{{\sqrt {{x^2}\left( {3 - {x^2}} \right)} }}{6} \le \frac{1}{4}\).

Thể tích khối chóp \(S.ABCD\) lớn nhất khi và chỉ khi\({x^2} = 3 - {x^2}\)\( \Leftrightarrow x = \frac{{\sqrt 6 }}{2}\).

Vậy \(\left\{ \begin{array}{l}a = 6\\b = 2\end{array} \right.\). Suy ra \({a^2} - 8b = 20\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(P = {x^{\frac{1}{3}}}.\sqrt[4]{x} = {x^{\frac{1}{3}}}.{x^{\frac{1}{4}}} = {x^{\frac{7}{{12}}}}\).

Câu 2

A. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau.

B. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.

C. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì vuông góc với nhau.

D. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường thẳng còn lại.

Lời giải

Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.

Câu 3

A. Hai biến cố \(A\) và \(B\) là hai biến cố độc lập

B. Hai biến cố \(A\) và \(B\) là hai biến cố đối nhau

C. Hợp của hai biến cố \(A\) và \(B\) bằng không gian mẫu

D. Giao của hai biến cố \(A\) và \(B\) bằng hợp của hai biến cố \(A\) và \(B\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y = {\log _2}x + 1\].

B. \[y = {\log _2}\left( {x + 1} \right)\].  
C. \[y = {\log _3}x\]. 
D. \[y = {\log _3}\left( {x + 1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP