Câu hỏi:

10/12/2025 4 Lưu

Cho hình chóp \(S.ABC\) có đáy \( \Rightarrow CI = \frac{{BC}}{2} = \frac{{a\sqrt 3 }}{2}\) là tam giác cân tại \(B\), cạnh bên \( = \frac{{{a^2}\sqrt 3 }}{4}\) vuông góc với đáy, \(I\) là trung điểm \(AC\) , \(H\) là hình chiếu của \(I\) lên \(SC\) . Khẳng định nào sau đây đúng?

A. \(\left( {BIH} \right) \bot \left( {SBC} \right)\).    
B. \(\left( {SAC} \right) \bot \left( {SAB} \right)\).  
C. \(\left( {SBC} \right) \bot \left( {ABC} \right)\). 
D. \(\left( {SAC} \right) \bot \left( {SBC} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABC  có đáy ABC là tam giác cân tại B , cạnh bên SA vuông góc với đáy, I là trung điểm AC , H là hình chiếu của I lên SC. Khẳng định nào sau đây đúng? (ảnh 1)

Ta có: \(\left\{ \begin{array}{l}BI \bot AC{\mkern 1mu} {\mkern 1mu} \left( {{\rm{gt}}} \right)\\BI \bot SA{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right. \Rightarrow BI \bot \left( {SAC} \right) \supset SC \Rightarrow SC \bot BI\) \(\left( 1 \right)\).

Theo giả thiết: \(SC \bot IH\) \(\left( 2 \right)\).

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra: \(SC \bot \left( {BIH} \right)\). Mà \(SC \subset \left( {SBC} \right)\) nên \(\left( {BIH} \right) \bot \left( {SBC} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {73,4^^\circ }\)

 Cho hình hộp chữ nhật ABCD .A'B'C'D' có AB = a,AD = 2a,AA' = 3a. Tính góc phẳng nhị diện [A',BD,A]? (ảnh 1)

Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)

Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)

Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)

Câu 2

a) \(2y' + y'' = \sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\).

Đúng
Sai

b) \(2y + y'.{\rm{tan}}x = 0\).

Đúng
Sai
c) \(4y - y'' = 2\).
Đúng
Sai
d) \(4y' + y''' = 0\).
Đúng
Sai

Lời giải

a) Sai

b) Sai

c) Sai

d) Đúng

Ta có \(y' = \sin 2x\), \(y'' = 2{\rm{cos}}2x\), \(y''' =  - 4\sin 2x\).

\(2y' + y'' = 2\left( {\sin 2x + {\rm{cos}}2x} \right) = 2\sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\),

\[2y + y'.{\rm{tan}}x = 2{\sin ^2}x + 2\sin x.{\rm{cos}}x.{\rm{tan}}x = 4{\sin ^2}x\],

\[4y - y'' = 4{\sin ^2}x - 2{\rm{cos}}2x = 2 - 4{\rm{cos2x}}\],

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y' = \frac{3}{{\left( {3x + 2} \right)\ln 3}}\).

B. \(y' = \frac{1}{{\left( {3x + 2} \right)\ln 3}}\).  
C. \(y' = \frac{1}{{\left( {3x + 2} \right)}}\).   
D. \(y' = \frac{3}{{\left( {3x + 2} \right)}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\(y = {\left( {\frac{{\rm{e}}}{\pi }} \right)^x}\).  

B. \(y = {\left( {\frac{2}{{\rm{e}}}} \right)^x}\). 
C. \(y = {\left( {\sqrt 2 } \right)^x}\).
D. \(y = {\left( {0,5} \right)^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP