Trong một hộp kín có 10 mảnh giấy có kích thước giống nhau được đánh số từ 1 đến 10. Lấy ngẫu nhiên hai lần, mỗi lần một mảnh và không trả lại hộp. Gọi \(A\) là biến cố "Lần 1 lấy được mảnh giấy đánh số lẻ" và \(B\) là biến cố "Lần 2 lấy được mảnh giấy đánh số lẻ”. Khẳng định nào sau đây là đúng?
Trong một hộp kín có 10 mảnh giấy có kích thước giống nhau được đánh số từ 1 đến 10. Lấy ngẫu nhiên hai lần, mỗi lần một mảnh và không trả lại hộp. Gọi \(A\) là biến cố "Lần 1 lấy được mảnh giấy đánh số lẻ" và \(B\) là biến cố "Lần 2 lấy được mảnh giấy đánh số lẻ”. Khẳng định nào sau đây là đúng?
A. Hai biến cố \(A\) và \(B\) là độc lập
B. Số phần tử của biến cố giao \(A \cap B\) là 20
C. Số phần tử của biến cố hợp \(A \cup B\) là 20
Quảng cáo
Trả lời:
B. Số phần tử của biến cố giao \(A \cap B\) là 20
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \( \approx {73,4^^\circ }\)
Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)
\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)
Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)
Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)
Câu 2
a) \(2y' + y'' = \sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\).
b) \(2y + y'.{\rm{tan}}x = 0\).
Lời giải
|
a) Sai |
b) Sai |
c) Sai |
d) Đúng |
Ta có \(y' = \sin 2x\), \(y'' = 2{\rm{cos}}2x\), \(y''' = - 4\sin 2x\).
\(2y' + y'' = 2\left( {\sin 2x + {\rm{cos}}2x} \right) = 2\sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\),
\[2y + y'.{\rm{tan}}x = 2{\sin ^2}x + 2\sin x.{\rm{cos}}x.{\rm{tan}}x = 4{\sin ^2}x\],
\[4y - y'' = 4{\sin ^2}x - 2{\rm{cos}}2x = 2 - 4{\rm{cos2x}}\],
Câu 3
A. \(a\sqrt 2 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(y' = \frac{3}{{\left( {3x + 2} \right)\ln 3}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \({a^{\frac{1}{3}}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\(y = {\left( {\frac{{\rm{e}}}{\pi }} \right)^x}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[y + 16 = - 9\left( {x + 3} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
