CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {73,4^^\circ }\)

 Cho hình hộp chữ nhật ABCD .A'B'C'D' có AB = a,AD = 2a,AA' = 3a. Tính góc phẳng nhị diện [A',BD,A]? (ảnh 1)

Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)

Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)

Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)

Lời giải

Trả lời: \(\frac{{\sqrt {15} }}{{15}}a\)

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, SA vuông góc ABC và SB = 2a. Gọi G là trọng tâm tam giác ABC. Tính khoảng cách từ G đến mặt phẳng SBC. (ảnh 1)

Kẻ \(AI \bot BC\), kẻ \(AH \bot SI\) tại \(H\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot SA}\\{BC \bot AI}\end{array} \Rightarrow BC \bot (SAI) \Rightarrow BC \bot AH} \right.\).

Ta lại có: \(AH \bot SI \Rightarrow AH \bot (SBC) \Rightarrow d(A,(SBC)) = AH\)

Ta có: \(SA = \sqrt {S{B^2} - B{A^2}}  = \sqrt {{{(2a)}^2} - {a^2}}  = \sqrt 3 a\)

Ta có: \(AH = \frac{1}{{\sqrt {\frac{1}{{S{A^2}}} + \frac{1}{{A{I^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{{\left( {\sqrt 3 a} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}}} }} = \frac{{\sqrt {15} }}{5}a\)

Vậy \(d(A,(SBC)) = \frac{{\sqrt {15} }}{5}a\).

Ta có: \(GA\) cắt \[\left( {SBC} \right)\] tại \[I\]

\( \Rightarrow \frac{{d(G,(SBC))}}{{d(A,(SBC))}} = \frac{{GI}}{{AI}} = \frac{1}{3} \Rightarrow d(G,(SBC)) = \frac{1}{3}d(A,(SBC)) = \frac{{\sqrt {15} }}{{15}}a.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP