Câu hỏi:

10/12/2025 6 Lưu

Cho hàm số \(y = \frac{{{x^3}}}{3} + 3{x^2} - 2\) có đồ thị là \[\left( C \right)\]. Viết phương trình tiếp tuyến với đồ thị \[\left( C \right)\] biết tiếp tuyến có hệ số góc \(k =  - 9\).

A. \[y + 16 =  - 9\left( {x + 3} \right)\].  

B. \[y - 16 =  - 9\left( {x - 3} \right)\].  
C. \[y =  - 9\left( {x + 3} \right)\]. 
D. \[y - 16 =  - 9\left( {x + 3} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[M\left( {{x_0};\,\frac{{x_0^3}}{3} + 3x_0^2 - 2} \right)\] là tiếp điểm .

Ta có: \(k = f'\left( {{x_0}} \right)\) \( \Leftrightarrow {x_0}^2 + 6{x_0} =  - 9\)\( \Leftrightarrow {x_0} =  - 3\)\( \Rightarrow {y_0} = f\left( {{x_0}} \right) = 16\)

Phương trình tiếp tuyến với đồ thị \[\left( C \right)\] thỏa mãn đầu bài là: \[y - 16 =  - 9\left( {x + 3} \right)\]..

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {73,4^^\circ }\)

 Cho hình hộp chữ nhật ABCD .A'B'C'D' có AB = a,AD = 2a,AA' = 3a. Tính góc phẳng nhị diện [A',BD,A]? (ảnh 1)

Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)

Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)

Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)

Câu 2

A. \(y' = \frac{3}{{\left( {3x + 2} \right)\ln 3}}\).

B. \(y' = \frac{1}{{\left( {3x + 2} \right)\ln 3}}\).  
C. \(y' = \frac{1}{{\left( {3x + 2} \right)}}\).   
D. \(y' = \frac{3}{{\left( {3x + 2} \right)}}\).

Lời giải

Ta có \(y' = \frac{3}{{\left( {3x + 2} \right)\ln 3}}\).

Câu 3

a) \(2y' + y'' = \sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\).

Đúng
Sai

b) \(2y + y'.{\rm{tan}}x = 0\).

Đúng
Sai
c) \(4y - y'' = 2\).
Đúng
Sai
d) \(4y' + y''' = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\(y = {\left( {\frac{{\rm{e}}}{\pi }} \right)^x}\).  

B. \(y = {\left( {\frac{2}{{\rm{e}}}} \right)^x}\). 
C. \(y = {\left( {\sqrt 2 } \right)^x}\).
D. \(y = {\left( {0,5} \right)^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Nếu tỉ lệ lạm phát là \(7\% \) một năm thì sức mua của 100 triệu đồng sau hai năm sẽ còn lại 86490000 đồng.

Đúng
Sai

b) Nếu tỉ lệ lạm phát là \(7\% \) một năm thì sức mua của 100 triệu đồng sau hai năm sẽ còn lại 96490000 đồng.

Đúng
Sai

c) Nếu sức mua của 100 triệu đồng sau ba năm chỉ còn lại 80 triệu đồng thì tỉ lệ lạm phát trung bình của ba năm đó là \(9,17\% \) (làm tròn kết quả đến hàng phần trăm)?

Đúng
Sai
d) Nếu tỉ lệ lạm phát trung bình là \(6\% \) một năm thì sau 15 năm sức mua của số tiền ban đầu chỉ còn lại một nửa
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP