Câu hỏi:

10/12/2025 36 Lưu

Phần 2. Câu trắc nghiệm đúng sai.

Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai

Một hộp chứa 15 viên bi xanh và 20 viên bi đỏ, có cùng kích thước và khối lượng. Lần lượt lấy ngẫu nhiên ra 2 viên bi, mỗi lần một viên. Gọi \(A\) là biến cố "Lấy được viên bi màu xanh ở lần thứ nhất" và \(B\) là biến cố "Lấy được viên bi màu xanh ở lần thứ hai”. Khi đó:

a) Hai biến cố \(A\) và \(B\) không độc lập

Đúng
Sai

b) \(P(AB) = \frac{3}{{17}}\)

Đúng
Sai

c) \(P(A\bar B) = \frac{{60}}{{119}}\)

Đúng
Sai
d) Xác suất để hai viên bi lấy ra khác màu là: \(\frac{{30}}{{119}}\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Sai

d) Sai

a) Hai biến cố \(A\) và \(B\) không độc lập vì việc lần đầu lấy được bi xanh hay không sẽ ảnh hưởng đến việc lần sau lấy bi.

b) Ta có \(P(AB) = \frac{{15}}{{35}} \cdot \frac{{14}}{{34}} = \frac{3}{{17}}\).

d) Xác suất để hai viên bi lấy ra khác màu là:

\(P(A\bar B) + P(\bar AB) = \frac{{15}}{{35}} \cdot \frac{{20}}{{34}} + \frac{{20}}{{35}} \cdot \frac{{15}}{{34}} = \frac{{60}}{{119}}{\rm{. }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {73,4^^\circ }\)

 Cho hình hộp chữ nhật ABCD .A'B'C'D' có AB = a,AD = 2a,AA' = 3a. Tính góc phẳng nhị diện [A',BD,A]? (ảnh 1)

Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)

Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)

Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)

Lời giải

Trả lời: \(\frac{{\sqrt {15} }}{{15}}a\)

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, SA vuông góc ABC và SB = 2a. Gọi G là trọng tâm tam giác ABC. Tính khoảng cách từ G đến mặt phẳng SBC. (ảnh 1)

Kẻ \(AI \bot BC\), kẻ \(AH \bot SI\) tại \(H\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot SA}\\{BC \bot AI}\end{array} \Rightarrow BC \bot (SAI) \Rightarrow BC \bot AH} \right.\).

Ta lại có: \(AH \bot SI \Rightarrow AH \bot (SBC) \Rightarrow d(A,(SBC)) = AH\)

Ta có: \(SA = \sqrt {S{B^2} - B{A^2}}  = \sqrt {{{(2a)}^2} - {a^2}}  = \sqrt 3 a\)

Ta có: \(AH = \frac{1}{{\sqrt {\frac{1}{{S{A^2}}} + \frac{1}{{A{I^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{{\left( {\sqrt 3 a} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}}} }} = \frac{{\sqrt {15} }}{5}a\)

Vậy \(d(A,(SBC)) = \frac{{\sqrt {15} }}{5}a\).

Ta có: \(GA\) cắt \[\left( {SBC} \right)\] tại \[I\]

\( \Rightarrow \frac{{d(G,(SBC))}}{{d(A,(SBC))}} = \frac{{GI}}{{AI}} = \frac{1}{3} \Rightarrow d(G,(SBC)) = \frac{1}{3}d(A,(SBC)) = \frac{{\sqrt {15} }}{{15}}a.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP