Câu hỏi:

10/12/2025 5 Lưu

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

Hùng và Dũng cùng học lớp \(11\;A\). Xác suất để Hùng và Dũng thi qua môn Toán Xác suất để ít nhất một bạn thi qua môn Toán là 0,85 ; xác suất để một bạn không thi qua môn Ngữ văn là 0,4. Nếu xem như việc thi qua môn Ngữ văn và môn Toán độc lập với nhau. Tính xác suất để hai bạn Hùng và Dũng cùng trượt 1 môn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 0,65

Lời giải

Xác suất để hai bạn cùng trượt môn Toán là 0,15 ;

Xác suất hai bạn cùng trượt môn Ngữ văn là 0,5 ;

Xác suất để hai bạn cùng trượt 1 môn là: \(0,15 + 0,5 = 0,65\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {73,4^^\circ }\)

 Cho hình hộp chữ nhật ABCD .A'B'C'D' có AB = a,AD = 2a,AA' = 3a. Tính góc phẳng nhị diện [A',BD,A]? (ảnh 1)

Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)

Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)

Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)

Câu 2

a) \(2y' + y'' = \sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\).

Đúng
Sai

b) \(2y + y'.{\rm{tan}}x = 0\).

Đúng
Sai
c) \(4y - y'' = 2\).
Đúng
Sai
d) \(4y' + y''' = 0\).
Đúng
Sai

Lời giải

a) Sai

b) Sai

c) Sai

d) Đúng

Ta có \(y' = \sin 2x\), \(y'' = 2{\rm{cos}}2x\), \(y''' =  - 4\sin 2x\).

\(2y' + y'' = 2\left( {\sin 2x + {\rm{cos}}2x} \right) = 2\sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\),

\[2y + y'.{\rm{tan}}x = 2{\sin ^2}x + 2\sin x.{\rm{cos}}x.{\rm{tan}}x = 4{\sin ^2}x\],

\[4y - y'' = 4{\sin ^2}x - 2{\rm{cos}}2x = 2 - 4{\rm{cos2x}}\],

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\(y = {\left( {\frac{{\rm{e}}}{\pi }} \right)^x}\).  

B. \(y = {\left( {\frac{2}{{\rm{e}}}} \right)^x}\). 
C. \(y = {\left( {\sqrt 2 } \right)^x}\).
D. \(y = {\left( {0,5} \right)^x}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y' = \frac{3}{{\left( {3x + 2} \right)\ln 3}}\).

B. \(y' = \frac{1}{{\left( {3x + 2} \right)\ln 3}}\).  
C. \(y' = \frac{1}{{\left( {3x + 2} \right)}}\).   
D. \(y' = \frac{3}{{\left( {3x + 2} \right)}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP