Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^2} - x - 2\) tại điểm có hoành độ \(x = 1\) là
Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^2} - x - 2\) tại điểm có hoành độ \(x = 1\) là
A. \(2x - y = 0\)
Quảng cáo
Trả lời:
Gọi \(M\) là tiếp điểm của tiếp tuyến và đồ thị hàm số. Theo giả thiết: \(M\left( {1;\, - 2} \right)\)
Gọi \(k\) là hệ số góc của tiếp tuyến với đồ thị hàm số tại \(M\).
Ta có \(y' = 2x - 1\), \(k = y'\left( 1 \right) = 1\)
Phương trình tiếp tuyến cần tìm là \(y = 1\left( {x - 1} \right) - 2 \Leftrightarrow x - y - 3 = 0\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \( \approx {62,7^0}\)
Lời giải
Kẻ \(BI \bot AC\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BI \bot AC}\\{BI \bot SA}\end{array} \Rightarrow BI \bot (SAC)} \right.\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SAC) \cap (SBC) = SC}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),IH \bot SC \Rightarrow [A,SC,B] = \widehat {IHB}}\\{{\mathop{\rm Trong}\nolimits} \,(SBC),BH \bot SC}\end{array}} \right.\)
Ta có:
Xét \(\Delta BH\) vuông tại \(I:\tan \widehat {BHI} = \frac{{BI}}{{HI}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\frac{{\sqrt 5 }}{5}a}} = \frac{{\sqrt {15} }}{2} \Rightarrow \widehat {BHI} \approx {62,7^0}\)
Câu 2
a) \[{y^2} + {\left( {y'} \right)^2} = 4\].
b) \(4y + y'' = 0\).
Lời giải
|
a) Sai |
b) Đúng |
c) Sai |
d) Sai |
\(y' = 2\cos 2x\), \(y'' = - 4\sin 2x\).
\[{y^2} + {\left( {y'} \right)^2} = {\sin ^2}2x + 4{\cos ^2}2x = 1 + 3{\cos ^2}2x\].
\(4y + y'' = 4\sin 2x - 4\sin 2x = 0\).
\(4y - y'' = 8\sin 2x\).
\(y'\tan 2x = 2\cos 2x.\frac{{\sin 2x}}{{\cos 2x}} = 2\sin 2x\).
Câu 3
A. \(a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Ba đường cao\[AA'\], \[BB'\], \[CC'\] đồng qui tại\[S\].
b) \[AA' = BB' = CC' = \frac{a}{2}\].
c) Góc giữa mặt bên mặt đáy là góc \[SIO\] (\[I\] là trung điểm\[BC\]).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(90^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.