Câu hỏi:

11/12/2025 15 Lưu

Cho hình chóp cụt đều \[ABC.A'B'C'\] với đáy lớn \[ABC\] có cạnh bằng \[a\]. Đáy nhỏ \[A'B'C'\] có cạnh bằng \(\frac{a}{2}\), chiều cao \[OO' = \frac{a}{2}\]. Các mệnh đề sau đúng hay sai?

a) Ba đường cao\[AA'\], \[BB'\], \[CC'\] đồng qui tại\[S\].

Đúng
Sai

b) \[AA' = BB' = CC' = \frac{a}{2}\].

Đúng
Sai

c) Góc giữa mặt bên mặt đáy là góc \[SIO\] (\[I\] là trung điểm\[BC\]).

Đúng
Sai
d) Đáy lớn \[ABC\] có diện tích gấp \[4\] lần diện tích đáy nhỏ \[A'B'C'\].
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Đúng

d) Đúng

Cho hình chóp cụt đều ABC.A'B'C' với đáy lớn ABC có cạnh bằng a. Đáy nhỏ A'B'C' có cạnh bằng a/2, chiều cao OO' = a/2. Các mệnh đề sau đúng hay sai? (ảnh 1)

+ Đáp án a đúng.
+ Gọi \[I\] là trung điểm của \[BC\].

Từ giả thiết dễ dàng chỉ ra được \[\frac{{AA'}}{{SA}} = \frac{{OO'}}{{SO}} = \frac{1}{2}\] \[ \Rightarrow SO = 2OO' = a\]. Mặt khác \[\Delta ABC\] là tam giác đều cạnh \[a\], có \[AI\] là đường trung tuyến \[ \Rightarrow AI = \frac{{a\sqrt 3 }}{2}\] \[ \Rightarrow AO = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\].

Áp dụng định lý Pytago trong \[\Delta SOA\] vuông tại \[O\] ta có:

\[S{A^2} = S{O^2} + A{O^2} = {a^2} + {\left( {\frac{{a\sqrt 3 }}{3}} \right)^2} = \frac{{12{a^2}}}{9}\] \[ \Rightarrow SA = \frac{{2a\sqrt 3 }}{3}\] \[ \Rightarrow AA' = \frac{{a\sqrt 3 }}{3}\]. Vì \[ABC.A'B'C'\] là hình chóp cụt đều nên \[AA' = BB' = CC' = \frac{{a\sqrt 3 }}{3}\] \[ \Rightarrow \] đáp án b sai.

+ Ta có: \[\left( {SBC} \right) \cap \left( {ABC} \right) = BC\]. Vì \[\Delta SBC\] cân tại \[S\] và \[I\] là trung điểm của \[BC\] nên suy ra \[SI \bot BC\]. Mặt khác \[\Delta ABC\] là tam giác đều có \[I\] là trung điểm của \[BC\] \[ \Rightarrow AI \bot BC\].

\[ \Rightarrow \left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \left( {SI,AI} \right) = \left( {SI,OI} \right) = \widehat {SIO}\] \[ \Rightarrow \] đáp án c đúng.

+ Ta có: \[\frac{{{S_{\Delta ABC}}}}{{{S_{\Delta A'B'C'}}}} = \frac{{\frac{1}{2}.AB.AC.\sin A}}{{\frac{1}{2}.A'B'.A'C'.\sin A'}} = \frac{{AB.AC}}{{A'B'.A'C'}} = \frac{{2A'B'.2A'C'}}{{A'B'.A'C'}} = 4\] \[ \Rightarrow \] đáp án d đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {62,7^0}\)

Lời giải

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a,SA vuông góc ABC) và SA = 2a. Tính góc phẳng nhị diện A,SC,B? (ảnh 1)

Kẻ \(BI \bot AC\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BI \bot AC}\\{BI \bot SA}\end{array} \Rightarrow BI \bot (SAC)} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SAC) \cap (SBC) = SC}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),IH \bot SC \Rightarrow [A,SC,B] = \widehat {IHB}}\\{{\mathop{\rm Trong}\nolimits} \,(SBC),BH \bot SC}\end{array}} \right.\)

Ta có:

ΔHCIΔACSHISA=CISCHI=SACISC=2aa2(2a)2+a2=55a

Xét \(\Delta BH\) vuông tại \(I:\tan \widehat {BHI} = \frac{{BI}}{{HI}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\frac{{\sqrt 5 }}{5}a}} = \frac{{\sqrt {15} }}{2} \Rightarrow \widehat {BHI} \approx {62,7^0}\)

Câu 2

a) \[{y^2} + {\left( {y'} \right)^2} = 4\].  

Đúng
Sai

b) \(4y + y'' = 0\).

Đúng
Sai
c) \[4y - y'' = 0\].  
Đúng
Sai
d) \[y = y'\tan 2x\].
Đúng
Sai

Lời giải

a) Sai

b) Đúng

c) Sai

d) Sai

\(y' = 2\cos 2x\), \(y'' =  - 4\sin 2x\).

\[{y^2} + {\left( {y'} \right)^2} = {\sin ^2}2x + 4{\cos ^2}2x = 1 + 3{\cos ^2}2x\].

\(4y + y'' = 4\sin 2x - 4\sin 2x = 0\).

\(4y - y'' = 8\sin 2x\).

\(y'\tan 2x = 2\cos 2x.\frac{{\sin 2x}}{{\cos 2x}} = 2\sin 2x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(90^\circ \).  

B. \(60^\circ \).  
C. \(30^\circ \). 
  D. \(45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP