Câu hỏi:

11/12/2025 13 Lưu

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a,SA \bot (ABC)\) và \(SB = a\sqrt 5 \). Gọi \(M\) là trung điểm \(BC\). Tính góc giữa đường thẳng \(SM\) và mặt phẳng \((SAC)\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \( \approx {11,5^0}\)

Lời giải

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a,SA vuông góc ABC và SB = a căn bậc hai 5. Gọi M là trung điểm BC. Tính góc giữa đường thẳng SM và mặt phẳng SAC? (ảnh 1)

Kẻ \(MH \bot AC\)

Ta có: \(MH \bot SA \Rightarrow MH \bot (SAC)\) tại \(H\) và \(SM\) cắt mp \((SAC)\) tại \(S\)

\( \Rightarrow SH\) là hình chiếu của \(SM\) trên mp \((SAC)\)

\( \Rightarrow (SM,(SAC)) = (SM,SH) = \widehat {MSH}\)

Ta có: \(HM = MC \cdot \sin {60^^\circ } = \frac{a}{2} \cdot \sin {60^^\circ } = \frac{{a\sqrt 3 }}{4}\);

\(HC = MC \cdot \cos {60^^\circ } = \frac{a}{4} \Rightarrow AH = AC - HC = a - \frac{a}{4} = \frac{{3a}}{4}\)

Ta có: \(SH = \sqrt {S{A^2} + A{H^2}}  = \sqrt {{{(a\sqrt 5 )}^2} - {a^2} + {{\left( {\frac{{3a}}{4}} \right)}^2}}  = \frac{{\sqrt {73} }}{4}a\)

Xét \(\Delta SHM\) vuông tại \(H:\tan \widehat {MSH} = \frac{{HM}}{{SH}} = \frac{{\frac{{a\sqrt 3 }}{4}}}{{\frac{{\sqrt {73} a}}{4}}} = \frac{{\sqrt {219} }}{{73}} \Rightarrow \widehat {MSH} \approx {11,5^0}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Phương trình có nghiệm dương nếu \[m > 0\].

Đúng
Sai

b) Phương trình luôn có nghiệm với mọi \[m\].   

Đúng
Sai

c) Phương trình luôn có nghiệm duy nhất \[x = {\log _3}\left( {m + 1} \right)\].      

Đúng
Sai
d) Phương trình có nghiệm với \[m \ge  - 1\].
Đúng
Sai

Lời giải

a) Đúng

b) Sai

c) Sai

d) Sai

Ta có \[{3^x} > 0\], \[\forall x \in \mathbb{R}\] nên \[{3^x} = m + 1\] có nghiệm \[ \Leftrightarrow m + 1 > 0 \Leftrightarrow m >  - 1\].

Từ đó ta loại được đáp án b và d

Xét đáp án a, phương trình có nghiệm dương thì \[{3^x} > {3^0} = 1\] nên \[m + 1 > 1 \Leftrightarrow m > 0\].

Từ đó đáp án a đúng.

Xét đáp án c, ta thấy sai vì ở đây thiếu điều kiện \[m >  - 1\].

Lời giải

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B,AB = a, AA' = 2a. Tính khoảng cách từ điểm A đến mặt phẳng (A'BC) (ảnh 1)

Dựng \[AH \bot A'B\].

Ta có \[\left. \begin{array}{l}BC \bot AB\\BC \bot AA'\end{array} \right\} \Rightarrow BC \bot \left( {A'AB} \right)\]\[ \Rightarrow BC \bot AH\]

Vậy \[AH \bot \left( {A'BC} \right)\]\[ \Rightarrow d\left( {A,\left( {A'BC} \right)} \right) = AH\].

Xét tam giác vuông \[A'AB\] có \[\frac{1}{{A{H^2}}} = \frac{1}{{A{{A'}^2}}} + \frac{1}{{A{B^2}}}\]\[ \Leftrightarrow AH = \frac{{2\sqrt 5 a}}{5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left( {SCD} \right) \bot \left( {SAD} \right) \cdot \]   

B. \[\left( {SBC} \right) \bot \left( {SIA} \right) \cdot \]

C. \[\left( {SDC} \right) \bot \left( {SAI} \right) \cdot \]   
D. \[\left( {SBD} \right) \bot \left( {SAC} \right) \cdot \]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP