Câu hỏi:

11/12/2025 43 Lưu

Cho hình lăng trụ đứng \[ABC.A'B'C'\] có đáy \[ABC\] là tam giác vuông tại \[B\], \[AB = BC = a\], \[BB' = a\sqrt 3 \]. Tính góc giữa đường thẳng \[A'B\] và mặt phẳng \[\left( {BCC'B'} \right)\].

A. \[45^\circ \].  

B. \[30^\circ \].  
C. \[60^\circ \].  
D. \[90^\circ \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B,AB = BC = a, BB' = a căn bậc hai 3. Tính góc giữa đường thẳng A'B và mặt phẳng (BCC'B'). (ảnh 1)

Hình lăng trụ đứng \[ABC.A'B'C'\] nên \[BB' \bot \left( {A'B'C'} \right)\]\[ \Rightarrow BB' \bot A'B'\]\[ \Rightarrow A'B' \bot BB'\] \[\left( 1 \right)\]

Bài ra có \[AB \bot BC\]\[ \Rightarrow A'B' \bot B'C'\].

Kết hợp với \[\left( 1 \right)\] \[ \Rightarrow A'B' \bot \left( {BCC'B'} \right)\] \[ \Rightarrow \widehat {\left( {A'B;\left( {BCC'B'} \right)} \right)} = \widehat {A'BB'}\]

\[ \Rightarrow \tan \widehat {\left( {A'B;\left( {BCC'B'} \right)} \right)} = \tan \widehat {A'BB'}\]\[ = \frac{{A'B'}}{{BB'}}\]\[ = \frac{a}{{a\sqrt 3 }}\]\[ = \frac{1}{{\sqrt 3 }}\]\[ \Rightarrow \widehat {\left( {A'B;\left( {BCC'B'} \right)} \right)} = 30^\circ \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {54^^\circ }\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a,SC vuông góc (ABCD) và SC = 3a. Tính góc phẳng nhị diện [B,SA,C]? (ảnh 1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)

Ta có:

Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)

Lời giải

Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), ABCD là hình thang vuông có đáy lớn AD gấp đôi đáy nhỏ BC, đồng thời đường cao AB = BC = a. (ảnh 1)

Ta có: \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot SB\)\( \Rightarrow \Delta SBC\) vuông tại \(B\).

Trong \(\Delta SBC\) dựng đường cao \(BH\)\( \Rightarrow \)\(d\left( {B;SC} \right) = BH\).

\(SB = 2a\); \(\frac{1}{{B{H^2}}} = \frac{1}{{S{B^2}}} + \frac{1}{{B{C^2}}}\)\( \Rightarrow BH = \frac{{BS.BC}}{{\sqrt {B{S^2} + B{C^2}} }} = \frac{{2a\sqrt 5 }}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(\left( {SAC} \right) \bot \left( {ABC{\rm{D}}} \right)\).   

Đúng
Sai

b) Tam giác \(SAC\) là tam giác vuông

Đúng
Sai

c) \(\left( {SAC} \right) \bot \left( {SB{\rm{D}}} \right)\).

Đúng
Sai
d) Chiều cao của hình chóp\(S.ABC{\rm{D}}\) là \(h = \frac{{\sqrt {{a^2} + {x^2}} }}{2}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Nghiệm của phương trình là các số vô tỷ.

Đúng
Sai

b) Tổng các nghiệm của một phương trình là một số nguyên.

Đúng
Sai

c) Tích các nghiệm của phương trình là một số âm.

Đúng
Sai
d) Phương trình vô nghiệm.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( { - 1;6} \right)\) .

B. \(\left( {\frac{5}{2};6} \right)\). 
C. \(\left( { - \infty ;6} \right)\). 
D. \(\left( {6; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP