Cho hình chóp \(S.ABCD\)đáy \(ABCD\) là hình thoi, \(SA = SC\). Khẳng định nào sau đây đúng?
Cho hình chóp \(S.ABCD\)đáy \(ABCD\) là hình thoi, \(SA = SC\). Khẳng định nào sau đây đúng?
A. \(\left( {SBD} \right) \bot \left( {ABCD} \right)\).
B. \(\left( {SBC} \right) \bot \left( {ABCD} \right)\).
Quảng cáo
Trả lời:
Chọn A
Ta có: AC BD (1) (giả thiết)
AC SO (2) ( Do DSAC là tam giác cân tại A và O là trung điểm của AC nên SO là đường cao của tam giác)
Từ (1) và (2) suy ra: AC (SBD) mà AC (ABCD) nên (SBD) (ABCD)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(\frac{{32}}{{\sqrt {82} }}\).
Lời giải
wGọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến \(d\) với đồ thị \(\left( C \right)\).
Ta có \(y' = - 3{x^2} + 6x \Rightarrow \) hệ số góc tiếp tuyến tại điểm \(M\) là \(y'\left( {{x_0}} \right) = - 3x_0^2 + 6{x_0}\).
Mà tiếp tuyến \(d\) vuông góc với đường thẳng \(\Delta :y = \frac{1}{9}x + \frac{{2021}}{9}\) nên \(y'\left( {{x_0}} \right) = - \frac{1}{k} = - 9\).
Khi đó \(3x_0^2 - 6{x_0} - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 3\\{x_0} = - 1\end{array} \right.\).
wNhư vậy
Phương trình tiếp tuyến \({d_1}\) tại điểm \(M\left( {3;0} \right)\) là \[{d_1}:9x + y - 27 = 0\].
Phương trình tiếp tuyến \({d_2}\) tại điểm \(M\left( { - 1;4} \right)\) là \({d_2}:9x + y + 5 = 0\).
Mặt khác \({d_1}{\rm{//}}{d_2}\) nên \(d\left( {{d_1};{d_2}} \right) = \frac{{32}}{{\sqrt {82} }}\).
Câu 2
A. \(a\sqrt {10} \).
Lời giải
Ta có: \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot SB\)\( \Rightarrow \Delta SBC\) vuông tại \(B\).
Trong \(\Delta SBC\) dựng đường cao \(BH\)\( \Rightarrow \)\(d\left( {B;SC} \right) = BH\).
\(SB = 2a\); \(\frac{1}{{B{H^2}}} = \frac{1}{{S{B^2}}} + \frac{1}{{B{C^2}}}\)\( \Rightarrow BH = \frac{{BS.BC}}{{\sqrt {B{S^2} + B{C^2}} }} = \frac{{2a\sqrt 5 }}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\frac{{{a^3}}}{4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.